The Jahn-Teller effect of the Cr2+ ion in aqueous solution: Ab initio QM/MM molecular dynamics simulations
Corresponding Author
Chinapong Kritayakornupong
Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140 Thailand
Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140 ThailandSearch for more papers by this authorCorresponding Author
Chinapong Kritayakornupong
Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140 Thailand
Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140 ThailandSearch for more papers by this authorAbstract
The hydration structure of Cr2+ has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H2O)6]2+ complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr2+ are in the range of 1.9–2.8 Å, which are slightly larger than those observed in the cases of Cu2+ and Ti3+. No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008
References
- 1 Fackler, J. P., Jr.; Holah, D. G. Inorg Chem 1965, 4, 954.
- 2 Sham, T. K.; Hastings, J. B.; Perlman, M. L. Chem Phys Lett 1981, 83, 391.
- 3 Sham, T. K. Acc Chem Res 1986, 19, 99.
- 4
Vaalsta, T. P.;
Maslen, E. N.
Acta Crystallogr B
1987,
43,
448.
10.1107/S0108768187097519 Google Scholar
- 5 Miyanaga, T.; Watanabe, I.; Ikeda, S. Chem Lett 1988, 1073.
- 6 Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Quesada, J. F. Inorg Chem 1993, 32, 4861.
- 7 Ohtaki, H.; Radnai, T. Chem Rev 1993, 93, 1157.
- 8 Telser, J.; Pardi, L. A.; Krzystek, J.; Brunel, L.-C. Inorg Chem 1998, 37, 5769.
- 9 Ballhausen, C. J. In Introduction to Ligand Field Theory; C. J. Ballhausen, Ed.; McGraw-Hill: New York, 1962; pp. 99.
- 10 Waizumi, K.; Ohtaki, H.; Masuda, H. Chem Lett 1992, 1489.
- 11 Åkesson, R.; Pettersson, L. G. M.; Sandström, M.; Wahlgren, U. J Phys Chem 1992, 96, 150.
- 12 Åkesson, R.; Pettersson, L. G. M.; Sandström, M.; Wahlgren, U. J Am Chem Soc 1994, 116, 8691.
- 13 D'Incal, A.; Hofer, T. S.; Randolf, B. R.; Rode, B. M. Phys Chem Chem Phys 2006, 8, 2841.
- 14 Fatmi, M. Q.; Hofer, T. S.; Rode, B. M.; Randolf, B. R. J Chem Phys 2005, 123, 4514.
- 15 Hofer, T. S.; Pribil, A. B.; Randolf, B. R.; Rode, B. M. J Am Chem Soc 2005, 127, 14231.
- 16 Hofer, T. S.; Randolf, B. R.; Rode, B. M. Chem Phys 2006, 323, 473.
- 17 Hofer, T. S.; Rode, B. M.; Randolf, B. R. Chem Phys 2005, 312, 81.
- 18 Kritayakornupong, C.; Plankensteiner, K.; Rode, B. M. J Phys Chem A 2003, 107, 10330.
- 19 Kritayakornupong, C.; Plankensteiner, K.; Rode, B. M. J Chem Phys 2003, 119, 6068.
- 20 Kritayakornupong, C.; Plankensteiner, K.; Rode, B. M. J Comput Chem 2004, 25, 1576.
- 21 Kritayakornupong, C.; Plankensteiner, K.; Rode, B. M. Chem Phys Chem 2004, 5, 1499.
- 22 Kritayakornupong, C.; Rode, B. M. J Chem Phys 2003, 118, 5065.
- 23 Du, H.; Rasaiah, J. C.; Miller, J. D. J Phys Chem B 2007, 111, 209.
- 24 Martins, L. R.; Ribeiro, M. C. C.; Skaf, M. S. J Phys Chem B 2002, 106, 5492.
- 25 Yang, T.; Tsushima, S.; Suzuki, A. J Phys Chem A 2001, 105, 10439.
- 26 Yang, T. X.; Bursten, B. E. Inorg Chem 2006, 45, 5291.
- 27 Blumberger, J.; Sprik, M. J Phys Chem B 2005, 109, 6793.
- 28 Kritayakornupong, C.; Yagüe, J. I.; Rode, B. M. J Phys Chem A 2002, 106, 10584.
- 29 Texler, N. R.; Rode, B. M. J Phys Chem 1995, 99, 15714.
- 30 Marini, G. W.; Texler, N. R.; Rode, B. M. J Phys Chem 1996, 100, 6808.
- 31 Schwenk, C. F.; Rode, B. M. Chem Phys Chem 2003, 4, 931.
- 32 Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem Phys Lett 1989, 162, 165.
- 33 Ahlrichs, R.; von Arnim, M. Methods and Techniques in Computational Chemistry; METECC-95: Cagliari, Sardinia, 1995, 1995.
- 34 von Arnim, M.; Ahlrichs, R. J Comput Chem 1998, 19, 1746.
- 35 Hay, P. J.; Wadt, W. R. J Chem Phys 1985, 82, 270.
- 36 Dunning, T. H., Jr.; Wadt, W. R. J Chem Phys 1989, 90, 1007.
- 37 Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry: Methods of Electronic Structure Theory: H. F. Schaefer, Ed.; Plenum Press: New York, 1977; Vol. 3.
- 38 Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J Comput Chem 1983, 4, 187.
- 39 Adams, D. J.; Adams, E. H.; Hills, G. J Mol Phys 1979, 38, 387.
- 40 Stillinger, F. H.; Rahman, A. J Chem Phys 1978, 68, 666.
- 41 Bopp, P.; Janscó, G.; Heinzinger, K. Chem Phys Lett 1983, 98, 129.
- 42 Hofer, T. S.; Tran, H. T.; Schwenk, C. F.; Rode, B. M. J Comput Chem 2004, 25, 211.
- 43 Powell, D. H.; Helm, L.; Merbach, A. E. J Chem Phys 1991, 95(12), 9258.
- 44 Rode, B. M.; Schwenk, C. F.; Hofer, T. S.; Randolf, B. R. Coord Chem Rev 2005, 249, 2993.
- 45 Helm, L.; Merbach, A. E. Coord Chem Rev 1999, 187, 151.