DFT models for copper(II) bispidine complexes: Structures, stabilities, isomerism, spin distribution, and spectroscopy
Mihail Atanasov
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Bl. 11, 1113 Sofia, Bulgaria
Search for more papers by this authorCorresponding Author
Peter Comba
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, GermanySearch for more papers by this authorBodo Martin
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorVera Müller
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorGopalan Rajaraman
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorHeidi Rohwer
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorSteffen Wunderlich
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorMihail Atanasov
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Bl. 11, 1113 Sofia, Bulgaria
Search for more papers by this authorCorresponding Author
Peter Comba
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, GermanySearch for more papers by this authorBodo Martin
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorVera Müller
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorGopalan Rajaraman
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorHeidi Rohwer
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorSteffen Wunderlich
Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
Search for more papers by this authorAbstract
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1263–1277, 2006
Supporting Information
This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/0192-8651/suppmat
Filename | Description |
---|---|
jws-jcc.20412.mat1.doc87 KB | Supporting information |
jws-jcc.20412.fig1.tif105.9 KB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Siegbahn, P. E. M.; Blomberg, M. R. A. Chem Rev 2000, 100, 421.
- 2 Friesner, R. A.; Dunietz, B. D. Acc Chem Res 2001, 34, 351.
- 3 Siegbahn, P. E. M. J Comp Chem 2001, 22, 1634.
- 4
Koch, W.;
Holthausen, M. C.
A Chemist's Guide to Density Functional Theory,
John Wiley & Sons, Inc.:
Chichester, UK,
2001,
2nd ed.
10.1002/3527600043 Google Scholar
- 5 Basumallick, L.; Sarangi, R.; DeBeer, G. S.; Elmore, B.; Hooper, A. B.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2005, 127, 3531.
- 6 Siegbahn, P. E. M.; Blomberg, M. R. A.; Wirstam nee Pavlov, M.; Crabtree, R. H. J Biol Inorg Chem 2001, 6, 460.
- 7 Szilagyi, R. K.; Metz, M.; Solomon, E. I. J Phys Chem A 2002, 106, 2994.
- 8 Koszinowski, K.; Schoeder, D.; Schwarz, H.; Holthausen, M. C.; Sauer, J.; Soizumi, H.; Armentrout, P. B. Inorg Chem 2002, 41, 5882.
- 9 Schatz, M.; Raab, V.; Foxon, S.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Angew Chem, Int Ed 2004, 43, 4360.
- 10 Siegbahn, P. E. M.; Crabtree, R. H. Structure and Bonding; Springer-Verlag: Berlin, 2000.
- 11 Himo, F.; Siegbahn, P. E. M. J Am Chem Soc 2001, 123, 10280.
- 12 Holthausen, M. C. J Comp Chem 2005, 26, 1505.
- 13 DeBeer George, S.; Basumallick, L.; Szilagyi, R. K.; Randall, D. W.; Hill, M. G.; Nersissian, A. M.; Valentine, J. S.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2003, 125, 11314.
- 14 Becke, A. D. J. J Chem Phys B 1993, 98, 5648.
- 15 Perdew, J. P. Phys Rev B 1986, 33, 8822.
- 16
Gewirth, A. A.;
Cohen, S. L.;
Schugar, H. J.;
Solomon, E. I.
Inorg Chem
1987,
26,
1933.
10.1021/ic00254a032 Google Scholar
- 17 Didziulis, S. V.; Cohen, S. L.; Gewirth, A. A.; Solomon, E. I. J Am Chem Soc 1988, 110, 250.
- 18 Deeth, R. J. J Chem Soc, Dalton Trans 2001, 664.
- 19
Comba, P.;
Kerscher, M.;
Merz, M.;
Müller, V.;
Pritzkow, H.;
Remenyi, R.;
Schiek, W.;
Xiong, Y.
Chem Eur J
2002,
8,
5750.
10.1002/1521-3765(20021216)8:24<5750::AID-CHEM5750>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 20 Comba, P.; Schiek, W. Coord Chem Rev 2003, 238–239, 21.
- 21 Comba, P.; Kerscher, M. Cryst Eng 2004, 6, 197.
- 22 Comba, P.; Hauser, A.; Kerscher, M.; Pritzkow, H. Angew Chem Int Ed 2003, 42, 4536.
- 23 Comba, P.; Martin, B.; Prikhod'ko, A.; Pritzkow, H.; Rohwer, H. Comptes Rendus Chimie 2005, 6, 1506.
- 24 Comba, P.; Lopez de Laorden, C.; Pritzkow, H. Helv Chim Acta 2005, 88, 647.
- 25 Bleiholder, C.; Börzel, H.; Comba, P.; Ferrari, R.; Heydt, A.; Kerscher, M.; Kuwata, S.; Laurenczy, G.; Lawrance, G. A.; Lienke, A.; Martin, B.; Merz, M.; Nuber, B.; Pritzkow, H. Inorg Chem 2005, 44, 8145.
- 26 Born, K.; Comba, P.; Ferrari, R.; Lawrance, G. A. in preparation.
- 27 Comba, P.; Merz, M.; Pritzkow, H. Eur J Inorg Chem 2003, 1711.
- 28
Börzel, H.;
Comba, P.;
Katsichtis, C.;
Kiefer, W.;
Lienke, A.;
Nagel, V.;
Pritzkow, H.
Chem Eur J
1999,
5,
1716.
10.1002/(SICI)1521-3765(19990604)5:6<1716::AID-CHEM1716>3.0.CO;2-8 CAS Web of Science® Google Scholar
- 29
Börzel, H.;
Comba, P.;
Hagen, K. S.;
Katsichtis, C.;
Pritzkow, H.
Chem Eur J
2000,
6,
914.
10.1002/(SICI)1521-3765(20000303)6:5<914::AID-CHEM914>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 30 Comba, P.; Lienke, A. Inorg Chem 2001, 40, 5206.
- 31 Börzel, H.; Comba, P.; Hagen, K. S.; Kerscher, M.; Pritzkow, H.; Schatz, M.; Schindler, S.; Walter, O. Inorg Chem 2002, 41, 5440.
- 32 Comba, P.; Kerscher, M.; Roodt, A. Eur J Inorg Chem 2004, 23, 4640.
- 33 Born, K.; Comba, P.; Fuchs, A.; Daubinet, A.; Wadepohl, H. submitted.
- 34 Wang, D.; Hanson, G. R. J Magn Reson A 1995, 117, 1.
- 35 Wang, D.; Hanson, G. R. Appl Magn Reson 1996, 11, 401.
- 36 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian Inc.: Wallingford, CT, 2004.
- 37 Neese, F. J Chem Phys 2003, 119, 9428.
- 38 Neese, F. Int J Quantum Chem 2001, 83, 104.
- 39 Berces, A.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Harris, F. E.; van den Hoek, P.; Jacobsen, H.; van Kessel, G.; Kootstra, F.; van Lenthe, E.; McCormack, D. A.; Osinga, V. P.; Patchkovskii, S.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Snijders, J. G.; Sola, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visser, O.; van Wezenbeek, E.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Baerends, E. J.; Autschbach, J.; Ziegler, T. ADF2004.01; SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, 2004; http://www.scm.com.
- 40 te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J Comp Chem 2001, 22, 931.
- 41 Atanasov, M.; Daul, C. A.; Rauzy, C. Struct Bond 2004, 106, 97.
- 42 Mulliken, R. S. J Chem Phys 1955, 23, 1833.
- 43 Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem Rev 1988, 88, 899.
- 44
Bader, R. F. W.
Atoms in Molecules: A Quantum Theory;
Oxford University Press:
Oxford,
1990.
10.1093/oso/9780198551683.001.0001 Google Scholar
- 45 Schaefer, A.; Horn, H.; Ahlrichs, R. J Chem Phys 1992, 97, 2571.
- 46 Weigand, F.; Haeser, M. Theor Chem Acc 1997, 97, 331.
- 47 Frenking, G.; Wichmann, K.; Fröhlich, N.; Loschen, C.; Lein, M.; Frunzke, J.; Rayon, V. M. Coord Chem Rev 2002, 21, 3351.
- 48 Szabo, A.; Kovacs, A.; Frenking, G. Z Anorg Allg Chem 2005, 631, 1803.
- 49 Morokuma, K. J Chem Phys 1971, 55, 1236.
- 50 Ziegler, T.; Rauk, A. Theor Chim Acta 1977, 46, 1.
- 51 Neese, F. J Chem Phys 2001, 115, 11080.
- 52 Reinen, D.; Atanasov, M.; Lee, S. Coord Chem Rev 1998, 175, 91.
- 53
Wiersema, A. J.;
Windle, J. J.
J Phys Chem,
68,
2316.
10.1021/j100790a049 Google Scholar
- 54 Bertrand, P. Inorg Chem 1993, 32, 741.
- 55 Atkins, P. W.; Symons, M. C. R. The Structure of Inorganic Radicals; Elsevier: Amsterdam, 1967.
- 56 Comba, P.; Hambley, T. W.; Hitchman, M. A.; Stratemeier, H. Inorg Chem 1995, 34, 3903.
- 57 McGarvey, B. R. J Phys Chem 1967, 71, 51.
- 58 Neese, F. J Phys Chem A 2001, 105, 4290.
- 59 Munzarova, M.; Kaupp, M. J Phys Chem 1999, 103, 9966.
- 60 Munzarova, M.; Kubacek, P.; Kaupp, M. J Am Chem Soc 2000, 122, 11900.
- 61 Gleiter, R.; Kobayashi, M.; Kuthan, J. Tetrahedron 1976, 32, 2775.
- 62 Kitaura, K.; Morokuma, K. Int J Quantum Chem 1976, 10, 325.
- 63 Comba, P.; Hambley, T. W.; Okon, N.; Lauer, G. MOMEC97, a Molecular Modeling Package for Inorganic Compounds; Heidelberg, 1997.
- 64 Bol, J. E.; Buning, C.; Comba, P.; Reedijk, J.; Ströhle, M. J Comput Chem 1998, 19, 512.
- 65 Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.
- 66 Perdew, J. P. Phys Rev Lett 1996, 78, 1396.
- 67 Neese, F. Magn Reson Chem 2004, 42, 187.
- 68 Atanasov, M.; Baerends, E. J.; Baettig, P.; Daul, C.; Rauzy, C.; Zbiri, M.; Chem Phys Lett 2004, 399, 433.