MSINDO parameterization for third-row transition metals
Corresponding Author
Thomas Bredow
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, Germany
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, GermanySearch for more papers by this authorGerald Geudtner
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, Germany
Search for more papers by this authorKarl Jug
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, Germany
Search for more papers by this authorCorresponding Author
Thomas Bredow
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, Germany
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, GermanySearch for more papers by this authorGerald Geudtner
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, Germany
Search for more papers by this authorKarl Jug
Theoretische Chemie, Universität Hannover, Am Kleinen Felde 30, D-30167 Hannover, Germany
Search for more papers by this authorAbstract
The recently developed MSINDO version of the semiempirical SCF MO method SINDO1 has been parameterized for third-row transition metals Sc to Zn. The set of reference data used for the previous parameterization of SINDO1 has been substantially increased by incorporating results of recent experiments and first-principles calculations. A comparison of calculated heats of formation, geometries, ionization potentials, and dipole moments with literature values for more than 200 gas phase molecules is presented. The accuracy of the modified MSINDO version achieved for heats of formation and bond lengths has been considerably improved compared to SINDO1. Small clusters of transition metals and metal oxides were included in the parameterization to ensure accurate results for studies of larger systems. The application of the method to small transition metal complexes that were not included in the parameterization shows that the optimized parameters are transferable to other compounds. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 861–887, 2001
References
- 1Bacon, A. D.; Zerner, M. C. Theor Chim Acta 1979, 53, 21.
- 2Nieke, C.; Reinhold, J. Theor Chim Acta 1984, 65, 99.
- 3Filatov, M. J.; Zilberberg, I. L.; Zhidomirov, G. M. Int J Quantum Chem 1992, 44, 565.
- 4Filatov, M. J.; Gritsenko, O. V.; Zhidomirov, G. M. Theor Chim Acta 1987, 72, 211.
- 5Thiel, W.; Voityuk, A. A. Theor Chim Acta 1992, 81, 391.
- 6Thiel, W.; Voityuk, A. A. J Phys Chem 1996, 100, 616.
- 7Ignatov, S. K.; Razuavaev, A. G.; Kokorev, V. N.; Alexandrov, Y. A. J Phys Chem 1996, 100, 6354.
- 8Bosque, R.; Maseras, F. J Comput Chem 2000, 21, 562.
- 9Voityuk, A. A.; Rösch, N. J Phys Chem A 2000, 104, 4089.
- 10Nanda, D. N.; Jug, K. Theor Chim Acta 1980, 57, 95.
- 11Jug, K.; Iffert, R.; Schulz, J. Int J Quantum Chem 1987, 32, 265.
- 12Li, J.; Correa de Mello, P.; Jug, K. J Comput Chem 1992, 13, 85.
- 13Li, J.; Jug, K. J Comput Chem 1992, 13, 93.
- 14Jug, K.; Bredow, T. Methods and Techniques in Computational Chemistry, METECC95; E. Clement; G. Corongiu, Eds.; STEF: Cagliari, 1995, p. 89.
- 15Jug, K.; Bredow, T. In Encyclopedia of Computational Chemistry; P. v. Ragué Schleyer; N. L. Allinger; T. Clark; J. Gasteiger; P. A. Kollman; H. F. Schaefer; P. R. Schreiner, Eds.; Wiley: New York, 1998, p. 2599.
- 16Ahlswede, B.; Jug, K. J Comput Chem 1999, 20, 563.
- 17Ahlswede, B.; Jug, K. J Comput Chem 1999, 20, 572.
- 18Jug, K.; Geudtner, G.; Homann, T. J Comput Chem 2000, 21, 974.
- 19Böhm, M. C.; Gleiter, R. Theor Chim Acta 1981, 59, 127.
- 20Jug, K.; Krack, M. Int J Quantum Chem 1992, 44, 517.
- 21Clementi, E.; Raimondi, D. L. J Chem Phys 1963, 38, 2686.
- 22Lide, D. CRC Handbook of Chemistry and Physics; CRC: Boca Raton, FL, 1991, 72th ed.
- 23 V. S. Yungman, Ed. Thermal Constants of Substances; Wiley: New York, 1999; vols. 4–6.
- 24 M. Binnewies; E. Milke, Eds. Thermochemical Data of Elements and Compounds; Wiley-VCH: Weinheim, 1999.
- 25 W. G. Mallard; P. J. Linstrom, Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, February 2000, National Instittute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
- 26Barin, I. Thermochemical Data of Pure Substances; VCH: Weinheim, 1989.
- 27Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J Phys Chem Ref Data 14, 1985, Supp. No. 1, JANAF Thermochemical Tables Third Edition.
- 28Huber, K. P.; Herzberg, G. Molecular Spectra Molecular Structure, IV. Constants of Diatomic Molecules; Van Nostrand: New York, 1979.
- 29 C. E. Moore, Ed. Nat Stand Ref Data Ser Bur Stand (US) 35/V I+II, 1971.
- 30Wagman, D. D.; Evans, W. H.; Parker, V. B.; Halow, I.; Bailey, S. M.; Schumm, R. H. Selected Values of Chemical Thermodynamics Properties, NBS Technical Note 270-4, Washington, DC, 1969.
- 31Gurvich, L. V.; Ezhov, Yu. S.; Osina, E. L.; Shenyavskaya, E. A. Zh Fiz Khim 1999, 73, 401.
- 32Hackert, A.; Gruehn, R. Z Anorg Allg Chem 1998, 624, 1756.
10.1002/(SICI)1521-3749(1998110)624:11<1756::AID-ZAAC1756>3.0.CO;2-0 CAS Web of Science® Google Scholar
- 33Barone, V.; Adamo, C. Int J Quantum Chem 1997, 61, 443.
- 34Espelid, Ø; Børve, K. J. J Phys Chem A 1997, 101, 9449.
- 35Bach, R. D.; Shobe, D. S.; Schlegel, H. B. J Phys Chem 1996, 100, 8770.
- 36 MNDO/d results for Zinc compounds.6
- 37 PM3 calculations with extended (s,p,d) basis set for transition metals.7
- 38Hildenbrand, D. L. J Chem Phys 1995, 103, 2634.
- 39Ebbinghaus, B. B. Combust Flame 1995, 101, 311.
- 40Sunderlin, L. S.; Wang, D.; Squires, R. R. J Am Chem Soc 1992, 114, 2788.
- 41Clemmer, D. E.; Dalleska, N. F.; Armentrout, P. B. J Chem Phys 1991, 95, 7263.
- 42Chen, Y.-M.; Clemmer, D. E.; Armentrout, P. B. J Chem Phys 1991, 95, 1228.
- 43Ohanessian, G.; Goddard, W. A. Acc Chem Res 1990, 23, 386.
- 44Merer, A. J. Annu Rev Phys Chem 1989, 40, 407.
- 45Jeung, G. H.; Koutecký, J. J Chem Phys 1988, 88, 3747.
- 46Langhoff, S. R.; Bauschlicher, C. W. Annu Rev Phys Chem 1988, 39, 181.
- 47Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J Chem Phys 1987, 86, 2123.
- 48Morse, M. D. Chem Rev 1986, 86, 1049.
- 49Balducci, G.; Gigli, G.; Guido, M. J Chem Phys 1985, 83, 1913.
- 50Balducci, G.; Gigli, G.; Guido, M. J Chem Phys 1983, 79, 5616.
- 51Zimmermann, B. Ph.D. thesis at Universität Hannover, Germany, 1999; heats of formation were estimated from binding energies.
- 52Bredow, T. unpublished B3LYP results obtained with Gaussian 94; 96 metal basis: LANL2DZ plus additional d functions, O basis: 6-311+G(d,p).
- 53 Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology; K. Kuchitsu, Ed.; New Series II/25; Springer: Berlin, 1998.
- 54 Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology; K. Kuchitsu, Ed.; New Series II/15; Springer: Berlin, 1987.
- 55 Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology; K. Kuchitsu, Ed.; New Series II/7; Springer: Berlin, 1976.
- 56Harrison, J. F.; Hutchison, J. H. Mol Phys 1999, 97, 1009.
- 57Sakai, Y.; Mogi, K.; Miyoshi, E. J Chem Phys 1999, 111, 3989.
- 58Xu, X.; Lü, X.; Wang, N.; Zhang, Q.; Ehara, M.; Nakatsuji, H. Int J Quantum Chem 1999, 72, 221.
- 59Wang, S. G.; Schwarz, W. H. E. J Chem Phys 1998, 109, 7252.
- 60Haaland, A.; Martinsen, K.-G.; Shorokhov, D. J.; Girichev, G. V.; Sokolov, V. I. J Chem Soc Dalton Trans 1998, 7, 2787.
- 61Chertihin, G. V.; Andrews, L. J Chem Phys 1997, 106, 3457.
- 62Boldyrev, A. I.; Simons, J. Mol Phys 1997, 9, 365.
- 63Citra, A. C.; Chertihin, G. V.; Andrews, L.; Neurock, M. J Phys Chem A 1997, 101, 3109.
- 64Knight, L. B.; Babb, R.; Ray, M.; Banisaukas, T. J.; Russon, L.; Dailey, R. S.; Davidson, E. R. J Chem Phys 1996, 105, 10237.
- 65Ram, R. S.; Bernath, P. F. J Chem Phys 1996, 105, 2668.
- 66Launila, O.; Lindgren, B. J Chem Phys 1996, 104, 6418.
- 67Jonas, V.; Thiel, W. J Chem Phys 1995, 102, 8474.
- 68Yang, D. S.; James, A. M.; Rayner, D. M.; Hackett, P. A. J Chem Phys 1995, 102, 3129.
- 69Beattie, I. R.; Spicer, M. D.; Young, N. A. J Chem Phys 1994, 100, 8700.
- 70Chertihin, G. V.; Andrews, L. J Am Chem Soc 1994, 116, 8322.
- 71Fournier, R. J Chem Phys 1993, 98, 8041.
- 72Cheeseman, M.; Van Zee, R. J.; Weltner, W. J Chem Phys 1989, 91, 2748.
- 73Bauschlicher, C. W.; Langhoff, S. R. Chem Phys Lett 1988, 145, 205.
- 74Bauschlicher, C. W.; Langhoff, S. R. Chem Phys Lett 1986, 126, 163.
- 75Rolfing, E. A.; Cox, D. M.; Kaldor, A.; Kohnson, K. H. J Chem Phys 1984, 81, 3846.
- 76Kudo, T.; Gordon, M. S. J Chem Phys 1995, 102, 6806.
10.1063/1.469152 Google Scholar
- 77Wang, L.-S.; Niu, B.; Lee, Y. T.; Shirley, D. A. J Chem Phys 1990, 93, 957.
10.1063/1.459122 Google Scholar
- 78Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J Chem Phys 1987, 86, 2123.
- 79Ketkar, S. N.; Fink, M. J Am Chem Soc 1985, 107, 338.
- 80Blomberg, M. R. A.; Brandemark, U. B.; Siegbahn, P. E. M.; Broch-Mathisen, K.; Karlström, G. J Phys Chem 1985, 89, 2171.
- 81Walch, S. P.; Bauschlicher, C. W. J Chem Phys 1983, 78, 4597.
- 82Churchill, M. R.; Amoh, K. N.; Wasserwan, H. J. Inorg Chem 1981, 20, 1609.
- 83Beagley, B.; Parrott, C. T.; Ulbrecht, V.; Young, G. G. J Mol Struct 1979, 52, 47.
- 84Haaland, A.; Samdal, S.; Seip, R. J Organometall Chem 1978, 153, 187.
- 85McNeill, E. A.; Scholer, F. R. J Am Chem Soc 1977, 99, 6243.
- 86Chiu, N.-S.; Schäfer, L. J Organometall Chem 1975, 101, 331.
- 87Schmidling, D. G. J Mol Struct 1975, 24, 1.
- 88Ronova, I. A.; Alekseev, N. V.; Veniaminov, N. N.; Kraves, M. A. Russ J Struct Chem 1975, 16, 441.
- 89Wilford, J. B.; Whitla, A.; Powell, H. M. J Organometall Chem 1967, 8, 495.
- 90Berndt, A. F.; Marsh, R. E. Acta Crystallogr 1963, 16, 118.
- 91Lide, D. CRC Handbook of Chemistry and Physics; CRC: Boca Raton, FL, 1999, 80th ed.
- 92Ryan, M. F.; Eyler, J. R.; Richardson, D. E. J Am Chem Soc 1992, 114, 8611.
- 93 Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology; K. Kuchitsu, Ed.; New Series II/19; Springer: Berlin, 1990.
- 94Pou-Amérigo, R.; Merchán, M.; Nebot-Gil, I.; Malmqvist, P.-A.; Roos, B. O. J Chem Phys 1994, 101, 4893.
- 95Steimle, T. C.; Shirley, J. E.; Simard, B.; Vasseur, M.; Hackett, P. J Chem Phys 1991, 95, 7179.
- 96Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision D.2; Gaussian, Inc.: Pittsburgh, PA, 1995.
- 97Dalleska, N. F.; Homa, K.; Sunderlin, L. S.; Armentrout, P. B. J Am Chem Soc 1994, 116, 3519.