In Vitro Reliability and Stress Distribution of Wide Diameter Extra-Short Implants as Support for Single Crowns and Fixed Partial Dentures
Correction(s) for this article
-
Correction to “In Vitro Reliability and Stress Distribution of Wide Diameter Extra-Short Implants as Support for Single Crowns and Fixed Partial Dentures”
- Volume 113Issue 5Journal of Biomedical Materials Research Part B: Applied Biomaterials
- First Published online: April 21, 2025
Vanessa Felipe Vargas-Moreno
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Search for more papers by this authorMichele Costa de Oliveira Ribeiro
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Search for more papers by this authorRafael Soares Gomes
Department of Prosthodontics, Faculty of Technology and Sciences (UniFTC), Salvador, Brazil
Search for more papers by this authorEdmara Tatiely Pedroso Bergamo
Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
Search for more papers by this authorEstevam Augusto Bonfante
Department of Prosthodontics and Periodontology, University of Sao Paulo - Bauru Dental School, Bauru, São Paulo, Brazil
Search for more papers by this authorAltair Antoninha Del Bel Cury
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Raissa Micaella Marcello-Machado
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Periodontology, Faculty of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
Correspondence:
Raissa Micaella Marcello-Machado ([email protected])
Search for more papers by this authorVanessa Felipe Vargas-Moreno
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Search for more papers by this authorMichele Costa de Oliveira Ribeiro
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Search for more papers by this authorRafael Soares Gomes
Department of Prosthodontics, Faculty of Technology and Sciences (UniFTC), Salvador, Brazil
Search for more papers by this authorEdmara Tatiely Pedroso Bergamo
Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
Search for more papers by this authorEstevam Augusto Bonfante
Department of Prosthodontics and Periodontology, University of Sao Paulo - Bauru Dental School, Bauru, São Paulo, Brazil
Search for more papers by this authorAltair Antoninha Del Bel Cury
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Raissa Micaella Marcello-Machado
Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, São Paulo, Brazil
Periodontology, Faculty of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
Correspondence:
Raissa Micaella Marcello-Machado ([email protected])
Search for more papers by this authorFunding: This study was supported by the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Finance Code 001 and Sao Paulo Research Foundation (FAPESP) through the scholarship (#2012/19078-7 and #2019/08693-1).
ABSTRACT
This study evaluated the reliability, failure mode, and stress distribution of wide-diameter extra-short dental implants (ESDI) as support for single crowns (SC) and fixed partial dentures (FPD) (3:1 crown-to-implant ratio [C:I]) for rehabilitation in the posterior atrophic mandible. For that, 126 ESDI (of 5 mm length) were allocated in four groups based on diameter (Ø4 and Ø6 mm) and prostheses (SC and FPD): SC4, SC6, FPD4, and FPD6. The fatigue test was performed by step-stress accelerated life testing (n = 21/group), failure mode by fractographic analysis, and stress distribution by finite element analysis: von Mises stress (σvM), maximum shear stress (τmax), and minimum principal stress (σmin). Reliability at 200 N was higher than 84% in both SC4 and SC6, with SC6 showing significantly higher reliability at 300 N. Failure mode involved the abutment (SC4 and SC6). The missions were suspended for the FPD groups due to 100% survival at the maximum load. The σvM showed a stress reduction of about 40% at the SC6 implant when compared to SC4 and FPD6 compared to FPD4. For the abutment, a minor decrease of at least 6.72% was observed comparing SC6 to SC4 and 2.78% for the FPD6 compared to FPD4. The τmax and σmin in the cortical bone demonstrated a stress reduction of at least 38.85% for the SC6 compared to SC4 and at least 3.78% in FPD6 compared to FPD4. The σmin in the cancellous bone showed an overall reduction of at least 8.46% for SC6 compared to SC4 and for FPD6 compared to FPD4. But, for τmax, in the cancellous bone, a 19.42% higher stress was found in SC6 compared to SC4 and 27.21% in FPD6 compared to FPD4. Finally, when splinting was used, a general stress reduction was found, about 50% in both diameters in the implant and abutment. According to the limitations of this in vitro study, it is possible to conclude that both groups (SC4 and SC6) showed high reliability in clinically relevant loads for the posterior atrophic mandible, SC6 having the lowest probability of failure at 300 N, with failure restricted to the abutment. Meanwhile, FPD6 has better stress distribution.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1D. Bordin, E. T. P. Bergamo, V. P. Fardin, P. G. Coelho, and E. A. Bonfante, “Fracture Strength and Probability of Survival of Narrow and Extra-Narrow Dental Implants After Fatigue Testing: In Vitro and In Silico Analysis,” Journal of the Mechanical Behavior of Biomedical Materials 71 (2017): 244–249.
- 2F. Renouard and D. Nisand, “Impact of Implant Length and Diameter on Survival Rates,” Clinical Oral Implants Research 17 (2006): 35–51.
- 3M. Fonseca, M. H. Adánez, S. Pieralli, M. Brezavšček, B. Yilmaz, and W. Att, “Short Versus Regular-Length Implants to Rehabilitate Partially Edentulous Mandible: A 2-Year Prospective Split-Mouth Clinical Study,” Journal of Oral Implantology 48 (2022): 277–284.
- 4C. E. Misch, J. Steigenga, E. Barboza, F. Misch-Dietsh, L. J. Cianciola, and C. Kazor, “Short Dental Implants in Posterior Partial Edentulism: A Multicenter Retrospective 6-Year Case Series Study,” Journal of Periodontology 77 (2006): 1340–1347.
- 5D. Bordin, E. T. P. Bergamo, E. A. Bonfante, V. P. Fardin, and P. G. Coelho, “Influence of Platform Diameter in the Reliability and Failure Mode of Extra-Short Dental Implants,” Journal of the Mechanical Behavior of Biomedical Materials 77 (2018): 470–474.
- 6C. Mertens, A. Meyer-Bäumer, H. Kappel, J. Hoffmann, and H. G. Steveling, “Use of 8-Mm and 9-Mm Implants in Atrophic Alveolar Ridges: 10-Year Results,” International Journal of Oral and Maxillofacial Implants 27 (2012): 1501–1508.
- 7S. S. Al-Johany, M. D. Al Amri, S. Alsaeed, and B. Alalola, “Dental Implant Length and Diameter: A Proposed Classification Scheme,” Journal of Prosthodontics 26 (2017): 252–260.
- 8F. J. d. N. Dias, V. G. A. Pecorari, C. B. Martins, M. Del Fabbro, and M. Z. Casati, “Short Implants Versus Bone Augmentation in Combination With Standard-Length Implants in Posterior Atrophic Partially Edentulous Mandibles: Systematic Review and Meta-Analysis With the Bayesian Approach,” International Journal of Oral and Maxillofacial Surgery 48 (2019): 90–96.
- 9L. A. Mezzomo, R. Miller, D. Triches, F. Alonso, and R. S. A. Shinkai, “Meta-Analysis of Single Crowns Supported by Short (<10 mm) Implants in the Posterior Region,” Journal of Clinical Periodontology 41 (2014): 191–213.
- 10V. F. Vargas-Moreno, M. C. d. O. Ribeiro, R. S. Gomes, F. Faot, A. A. Del Bel Cury, and R. M. Marcello-Machado, “Clinical Performance of Short and Extrashort Dental Implants With Wide Diameter: A Systematic Review With Meta-Analysis,” Journal of Prosthetic Dentistry 132 (2023): 1260.e1–1260.e13.
- 11A. Ravidà, S. Barootchi, H. Askar, F. del Suárez-López Amo, L. Tavelli, and H.-L. Wang, “Long-Term Effectiveness of Extra-Short (≤ 6 mm) Dental Implants: A Systematic Review,” International Journal of Oral and Maxillofacial Implants 34 (2019): 68–84.
- 12J. A. Mendonça, C. E. Francischone, P. M. Senna, A. E. de Matos Oliveira, and B. S. Sotto-Maior, “A Retrospective Evaluation of the Survival Rates of Splinted and Non-Splinted Short Dental Implants in Posterior Partially Edentulous Jaws,” Journal of Periodontology 85 (2014): 787–794.
- 13E. P. Figueirêdo, E. A. Sigua-Rodriguez, M. J. Pimentel, A. R. Oliveira Moreira, d. A. Nóbilo MA, and J. R. de Albergaria-Barbosa, “Photoelastic Analysis of Fixed Partial Prosthesis Crown Height and Implant Length on Distribution of Stress in Two Dental Implant Systems,” International Journal of Dentistry 2014 (2014): 1–7.
10.1155/2014/206723 Google Scholar
- 14B. Rangert, T. Jemt, and L. Jörneus, “Forces and Moments on Branemark Implants,” International Journal of Oral and Maxillofacial Implants 4 (1989): 241–247.
- 15B. S. Sotto-Maior, P. M. Senna, W. J. da Silva, E. P. Rocha, and A. A. Del Bel Cury, “Influence of Crown-To-Implant Ratio, Retention System, Restorative Material, and Occlusal Loading on Stress Concentrations in Single Short Implants,” International Journal of Oral and Maxillofacial Implants 27 (2012): e13-8.
- 16H. Arinc, “Effects of Prosthetic Material and Framework Design on Stress Distribution in Dental Implants and Peripheral Bone: A Three-Dimensional Finite Element Analysis,” Medical Science Monitor 24 (2018): 4279–4287.
- 17S. Yamaguchi, Y. Yamanishi, L. S. Machado, et al., “In Vitro Fatigue Tests and In Silico Finite Element Analysis of Dental Implants With Different Fixture/Abutment Joint Types Using Computer-Aided Design Models,” Journal of Prosthodontic Research 62 (2018): 24–30.
- 18V. F. Vargas-Moreno, R. S. Gomes, M. C. d. O. Ribeiro, M. I. M. Freitas, A. A. Del Bel Cury, and R. M. Marcello-Machado, “Influence of Diameter in the Stress Distribution of Extra-Short Dental Implants Under Axial and Oblique Load,” Brazilian Journal of Oral Science 22 (2023): e238152.
10.20396/bjos.v22i00.8668152 Google Scholar
- 19C. A. Pattin, W. E. Caler, and D. R. Carter, “Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone,” Journal of Biomechanics 29 (1996): 69–79.
- 20T. Sugiura, K. Horiuchi, M. Sugimura, and S. Tsutsumi, “Evaluation of Threshold Stress for Bone Resorption Around Screws Based on In Vivo Strain Measurement of Miniplate,” Journal of Musculoskeletal & Neuronal Interactions 1 (2000): 165–170.
- 21G. Papavasiliou, P. Kamposiora, S. C. Bayne, and D. A. Felton, “Three-Dimensional Finite Element Analysis of Stress-Distribution Around Single Tooth Implants as a Function of Bony Support, Prosthesis Type, and Loading During Function,” Journal of Prosthetic Dentistry 76 (1996): 633–640.
- 22D. Bozkaya, S. Muftu, and A. Muftu, “Evaluation of Load Transfer Characteristics of Five Different Implants in Compact Bone at Different Load Levels by Finite Elements Analysis,” Journal of Prosthetic Dentistry 92 (2004): 523–530.
- 23N. Clelland, J. Chaudhry, R. Rashid, and E. McGlumphy, “Split-Mouth Comparison of Splinted and Nonsplinted Prostheses on Short Implants: 3-Year Results,” International Journal of Oral and Maxillofacial Implants 31 (2016): 1135–1141.
- 24M. Toniollo, A. Macedo, R. Rodrigues, R. Ribeiro, and M. de Mattos, “A Three-Dimensional Finite Element Analysis of the Stress Distribution Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges With Regular or Short Morse Taper Implants,” International Journal of Oral and Maxillofacial Implants 32 (2017): 372–376.
- 25B. T. Bal, A. Çaglar, C. Aydın, H. Yılmaz, M. Bankoglu, and A. Eser, “Finite Element Analysis of Stress Distribution With Splinted and Nonsplinted Maxillary Anterior Fixed Prostheses Supported by Zirconia or Titanium Implants,” International Journal of Oral and Maxillofacial Implants 28 (2013): e27–38.
- 26S.-A. Lee, C.-T. Lee, M. Fu, W. Elmisalati, and S.-K. Chuang, “Systematic Review and Meta-Analysis of Randomized Controlled Trials for the Management of Limited Vertical Height in the Posterior Region: Short Implants (5 to 8 mm) vs Longer Implants (Greater Than 8 mm) in Vertically Augmented Sites,” International Journal of Oral and Maxillofacial Implants 29 (2014): 1085–1097.
- 27J. Nissan, O. Ghelfan, M. Gross, and G. Chaushu, “Analysis of Load Transfer and Stress Distribution by Splinted and Unsplinted Implant-Supported Fixed Cemented Restorations,” Journal of Oral Rehabilitation 37 (2010): 658–662.
- 28C. Garaicoa-Pazmiño, F. Suárez-López del Amo, A. Monje, et al., “Influence of Crown/Implant Ratio on Marginal Bone Loss: A Systematic Review,” Journal of Periodontology 85 (2014): 1214–1221.
- 29E. T. P. Bergamo, S. Yamaguchi, P. G. Coelho, et al., “Survival of Implant-Supported Resin-Matrix Ceramic Crowns: In Silico and Fatigue Analyses,” Dental Materials 37 (2021): 523–533.
- 30E. A. Bonfante, M. Suzuki, F. C. Lorenzoni, et al., “Probability of Survival of Implant-Supported Metal Ceramic and CAD/CAM Resin Nanoceramic Crowns,” Dental Materials 31 (2015): e168–e177.
- 31M. I. M. Freitas, R. S. Gomes, M. M. Ruggiero, et al., “Probability of Survival and Stress Distribution of Narrow Diameter Implants With Different Implant–Abutment Taper Angles,” Journal of Biomedical Materials Research 110 (2022): 638–645.
- 32E. A. Bonfante and P. G. Coelho, “A Critical Perspective on Mechanical Testing of Implants and Prostheses,” Advances in Dental Research 28 (2016): 18–27.
- 33E. O. Almeida, A. C. Freitas Jr, E. A. Bonfante, L. Marotta, N. R. F. A. Silva, and P. G. Coelho, “Mechanical Testing of Implant-Supported Anterior Crowns With Different Implant/Abutment Connections,” International Journal of Oral and Maxillofacial Implants 28 (2013): 103–108.
- 34B. S. Sotto-Maior, E. G. F. Mercuri, P. M. Senna, N. M. S. P. Assis, C. E. Francischone, and A. A. Del Bel Cury, “Evaluation of Bone Remodeling Around Single Dental Implants of Different Lengths: A Mechanobiological Numerical Simulation and Validation Using Clinical Data,” Computer Methods in Biomechanics and Biomedical Engineering 19 (2016): 699–706.
- 35M. Cruz, T. Wassall, and E. M. Toledo, “Finite Element Stress Analysis of Dental Prostheses Supported by Straight and Angled Implants,” Journal of Prosthetic Dentistry 104 (2009): 346.
- 36E. Erkmen, G. Meriç, A. Kurt, Y. Tunç, and A. Eser, “Biomechanical Comparison of Implant Retained Fixed Partial Dentures With Fiber Reinforced Composite Versus Conventional Metal Frameworks: A 3D FEA Study,” Journal of the Mechanical Behavior of Biomedical Materials 4 (2011): 107–116.
- 37L. Li, Z. Wang, Z. Bai, et al., “Three-Dimensional Finite Element Analysis of Weakened Roots Restored With Different Cements in Combination With Titanium Alloy Posts,” Chinese Medical Journal 119, no. 4 (2006): 305–311, https://doi.org/10.1097/00029330-200602020-00007.
- 38C. F. Amaral, R. S. Gomes, R. C. M. Rodrigues Garcia, and A. A. Del Bel Cury, “Stress Distribution of Single-Implant–Retained Overdenture Reinforced With a Framework: A Finite Element Analysis Study,” Journal of Prosthetic Dentistry 119 (2018): 791–796.
- 39H. H. Zadeh, F. Guljé, P. J. Palmer, et al., “Marginal Bone Level and Survival of Short and Standard-Length Implants After 3 Years: An Open Multi-Center Randomized Controlled Clinical Trial,” Clinical Oral Implants Research 29 (2018): 894–906.
- 40M. M. Ruggiero, R. Soares Gomes, E. T. Pedroso Bergamo, M. I. M. Freitas, E. A. Bonfante, and A. A. Del Bel Cury, “Resin-Matrix Ceramics for Occlusal Veneers: Effect of Thickness on Reliability and Stress Distribution,” Dental Materials 37 (2021): e131–9.
- 41S. C. H. Regalo, C. M. Santos, M. Vitti, et al., “Evaluation of Molar and Incisor Bite Force in Indigenous Compared With White Population in Brazil,” Archives of Oral Biology 53, no. 3 (2008): 282–286, https://doi.org/10.1016/j.archoralbio.2007.10.003.
- 42M. Palinkas, M. S. P. Nassar, F. A. Cecílio, et al., “Age and Gender Influence on Maximal Bite Force and Masticatory Muscles Thickness,” Archives of Oral Biology 55 (2010): 797–802.
- 43R. A. M. De Abreu, M. D. Pereira, F. Furtado, G. P. R. Prado, W. Mestriner, and L. M. Ferreira, “Masticatory Efficiency and Bite Force in Individuals With Normal Occlusion,” Archives of Oral Biology 59 (2014): 1065–1074.
- 44J. E. Ritter, “Predicting Lifetimes of Materials and Material Structures,” Dental Materials 11 (1995): 142–146.
- 45B. E. Pjetursson, D. Thoma, R. Jung, M. Zwahlen, and A. Zembic, “A Systematic Review of the Survival and Complication Rates of Implant-Supported Fixed Dental Prostheses (FDPs) After a Mean Observation Period of at Least 5 Years,” Clinical Oral Implants Research 23 (2012): 22–38.
- 46M. McCracken, “Dental Implant Materials: Commercially Pure Titanium and Titanium Alloys,” Journal of Prosthodontics 8 (1999): 40–43.
- 47R. Hirata, E. Bonfante, L. Machado, N. Tovar, and P. Coelho, “Mechanical Evaluation of Two Grades of Titanium Used in Implant Dentistry,” International Journal of Oral and Maxillofacial Implants 30 (2015): 800–805.
- 48H. Breme, V. Biehl, N. Reger, and E. Gawalt, “ Chapter 1c Metallic Biomaterials: Titanium and Titanium Alloys,” in Handbook of Biomaterial Properties, 2nd ed. (Springer New York, 2016), 167–189.
10.1007/978-1-4939-3305-1_16 Google Scholar
- 49P. Papaspyridakos, C.-J. Chen, M. Singh, H.-P. Weber, and G. O. Gallucci, “Success Criteria in Implant Dentistry,” Journal of Dental Research 91 (2012): 242–248.
- 50A. Quaranta, M. Piemontese, G. Rappelli, G. Sammartino, and M. Procaccini, “Technical and Biological Complications Related to Crown to Implant Ratio: A Systematic Review,” Implant Dentistry 23 (2014): 180–187.
- 51H. J. A. Meijer, C. Boven, K. Delli, and G. M. Raghoebar, “Is There an Effect of Crown-to-Implant Ratio on Implant Treatment Outcomes? A Systematic Review,” Clinical Oral Implants Research 29 (2018): 243–252.
- 52R. J. Blanes, “To What Extent Does the Crown-Implant Ratio Affect the Survival and Complications of Implant-Supported Reconstructions? A Systematic Review,” Clinical Oral Implants Research 20 (2009): 67–72.