Volume 109, Issue 11 pp. 1754-1767
RESEARCH ARTICLE

Zinc- and strontium- co-incorporated nanorods on titanium surfaces with favorable material property, osteogenesis, and enhanced antibacterial activity

Yanqi Chen

Yanqi Chen

Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China

Search for more papers by this author
Chuan Zhou

Chuan Zhou

Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China

Search for more papers by this author
Yiwen Xie

Yiwen Xie

Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China

Search for more papers by this author
Antian Xu

Antian Xu

Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China

Search for more papers by this author
Ye Guan

Ye Guan

Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China

Search for more papers by this author
Wei Lu

Wei Lu

Department of Periodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China

Search for more papers by this author
Xiaoxiang Wang

Xiaoxiang Wang

School of Materials Science and Engineering, Zhejiang University School of Materials Science and Engineering, Hangzhou, China

Search for more papers by this author
Fuming He

Corresponding Author

Fuming He

Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China

Correspondence

Prof. Fuming He, MD, DDS, Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, No 395 Yanan Road, Xiacheng District, Hangzhou City, China 310006.

Email: [email protected]

Search for more papers by this author
First published: 19 April 2021
Citations: 8

Funding information: National Natural Science Foundation of China, Grant/Award Number: 31670970; Natural Science Foundation of Zhejiang Province, Grant/Award Numbers: LQ20H140004, LQ21H140001; Science and Technology Department of Zhejiang Province, Grant/Award Number: 2019C03081

Abstract

Early infection and peri-implantitis after implant restoration are major reasons for dental implant failure. Implant-associated infections are majorly attributed to biofilm formation. In this study, co-incorporated zinc- (Zn-) and strontium- (Sr-) nanorod coating on sandblasted and acid-etched (SLA) titanium (SLA-Zn/Sr) was fabricated by hydrothermal synthesis. It was aimed at promoting osteogenesis while inhibiting biofilm formation. The nanorod-like particles (φ 30–50 nm) were found to be evenly formed on SLA-Zn/Sr (Zn: 1.49 ± 0.16 wt%; Sr: 21.69 ± 2.74 wt%) that was composed of well-crystallized ZnTiO3 and SrTiO3 phases. With a sufficient interface bonding strength (42.00 ± 3.00 MPa), SLA-Zn/Sr enhanced the corrosion resistance property of titanium. Besides, SLA-Zn/Sr promoted the cellular initial adhesion, proliferation and osteogenic differentiation of rBMSCs in vitro while inhibiting the adhesion of Staphylococcus aureus and Porphyromonas gingivalis . In addition, through down-regulating icaA gene expression, this novel surface reduced the secretion of polysaccharide intercellular adhesion (reduced by 87.9% compared to SLActive) to suppress the S. aureus biofilm formation. We, therefore, propose a new chemical modification on titanium for multifunctional implant material development. Due to the Zn/Sr co-doping in coating, material properties, early osteogenic effect and antibacterial ability of titanium can be simultaneously enhanced, which has the potential to be applied in dental implantation in the future.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.