Oxygen, water, and sodium chloride transport in soft contact lenses materials
Rafael Gavara
Packaging Group, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Avda, Agustín Escardino, 46980 Paterna, Spain
Search for more papers by this authorCorresponding Author
Vicente Compañ
Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universidad Politécnica de Valencia, Camino de vera s/n, 46020 Valencia, Spain
Correspondence to: V. Compañ; e-mail: [email protected]Search for more papers by this authorRafael Gavara
Packaging Group, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Avda, Agustín Escardino, 46980 Paterna, Spain
Search for more papers by this authorCorresponding Author
Vicente Compañ
Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universidad Politécnica de Valencia, Camino de vera s/n, 46020 Valencia, Spain
Correspondence to: V. Compañ; e-mail: [email protected]Search for more papers by this authorAbstract
Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218–2231, 2017.
REFERENCES
- 1 Nicolson PC, Vogt J. Soft contact lens polymers: An evolution. Biomaterials 2001; 22: 3273–3283.
- 2 Nicolson PC, Baron RC. Extended wear ophthalmic lens patent EP0819258 (A1). 2001.
- 3 Willis SL, Court JL, Redman RP, Wang JH, Leppard SW, O'Byrne VJ, Small SA, Lewis AL, Jones SA, Stratford PW. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 2001; 22: 3261–3272.
- 4 Tighe B. Silicone hydrogels: Structure, properties and behaviour. In: DF Sweeney, editor. Silicone Hydrogels: Continuous Wear Contact Lenses. Oxford: Butterworth-Heinemann; 2004, p. 4–5.
- 5 Guan L, Jimenez MEG, Walowski C, Boushehri A, Prausnitz JM, Radke CJ. Permeability and partition coefficient of aqueous sodium chloride in soft contact lenses. J Appl Polym Sci 2011; 122: 1457–1471.
- 6 Refojo MF. Mechanism of gas-transport through contact-lenses. J Am Optometr Assoc 1979; 50: 285–287.
- 7 Kunzler JF. Silicone hydrogels for contact lens application. Trends Polym Sci 1996; 4: 52–59.
- 8 Kim J, Conway A, Chauhan A. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials 2008; 29: 2259–2269.
- 9 Compan V, Guzman J, Riande E. A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes. Biomaterials 1998; 19: 2139–2145.
- 10 Austin D, Kumar RV. Ionic conductivity in hydrogels for contact lens applications. Ionics 2005; 11: 262–268.
- 11 Ju H, Sagle AC, Freeman BD, Mardel JI, Hill AJ. Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels. J Membr Sci 2010; 358: 131–141.
- 12 Holly FJ. Wettability of hydrogels. 1. Poly(2-hydroxyethyl methacrylate). J Biomed Mater Res 1975; 9: 315–326.
- 13 Nicolson PC, Baron RC, Chabrecek P, Court J, Domschke A, Griesser HJ, Ho A, Hoepken J, Laycock BG, Liu Q, Lohmann D, Meijs GF, Papaspiliotopoulos E, Riffle JS, Schindhelm K, Sweeney D, Terry WL Jr, Vogt J, Winterton LC. CIBA GEIGY AG (CIBA-C) assignee. Extended wear ophthalmic lens patent US 5965631. 1999.
- 14 Refojo MF, Leong FL. Contact and intraocular lens. Med J 1981; 7: 226–233.
- 15 Domschke A, Winterton L, Lohmann D. Morphology requirements for on-eye mobility of soft oxygen permeable contact lenses. Abstr Pap Am Chem Soc 1997; 213: 26-PMSE.
- 16 Muntz A, Subbaraman LN, Sorbara L, Jones L. Tear exchange and contact lenses: A review. J Optometry 2015; 8: 2–11.
- 17 Graham AD, Truong TN, Lin MC. Conjunctival epithelial flap in continuous contact lens wear. Optometry Vis Sci 2009; 86: 324–331.
- 18 Weidemann KE, Lakkis C. Clinical performance of microchannel contact lenses. Optometry Vis Sci 2005; 82: 498–504.
- 19 Miller KL, Polse KA, Radke CJ. Fenestrations enhance tear mixing under silicone-hydrogel contact lenses. Investig Ophthalmol Vis Sci 2003; 44: 60–67.
- 20 Doi M, Refojo MF. Histopathology of rabbit eyes with intravitreous silicone fluorosilicone copolymer oil. Exp Eye Res 1994; 59: 737–746.
- 21 Chauhan A, Radke CJ. Settling and deformation of a thin elastic shell on a thin fluid layer lying on a solid surface. J Colloid Interface Sci 2002; 245: 187–197.
- 22 Tighe B. Silicone hydrogels materials—How they work? In: D Sweeney, editor. Silicone Hydrogels: The Rebirth of Continuous Wear Contact Lenses. Oxford: Butterworth Heinemann; 2000. pp 1–21.
- 23 Monticelli MV, Chauhan A, Radke CJ. The effect of water hydraulic permeability on the settling of a soft contact lens on the eye. Curr Eye Res 2005; 30: 329–336.
- 24 Lopez-Alemany A, Compan V, Refojo MF. Porous structure of purevision (TM) versus focus (R) night and day (TM) and conventional hydrogel contact lenses. J Biomed Mater Res 2002; 63: 319–325.
- 25 Pozuelo J, Compan V, Gonzalez-Meijome JM, Gonzalez M, Molla S. Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. J Membr Sci 2014; 452: 62–72.
- 26 Cussler EL. Diffusion. Oxford: Cambridge University Press; 1997.
- 27 Crank J. The Mathematics of Diffusion: Clarendon Press; 1956.
- 28 Cheng ML, Sun YM. Observation of the solute transport in the permeation through hydrogel membranes by using FTIR-microscopy. J Membr Sci 2005; 253: 191–198.
- 29 Yasuda H, Lamaze CE, Ikenberr LD. Permeability of solutes through hydrated polymer membranes .i. Diffusion of sodium chloride. Makromol Chem Macromol Chem Phys 1968; 118: 19.
- 30 Yasuda H, Lamaze CE, Peterlin A. Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. J Polym Sci A-2 Polym Phys 1971; 9: 1117.
- 31 Aiba S, Ohashi M, Huang SY. Rapid determination of oxygen permeability of polymer membranes. Indus Eng Chem Fundament 1968; 7: 497.
- 32 Fatt I, Helen RS. Oxygen tension under an oxygen permeable contact lens. Am J Optometry Physiol Opt 1971; 48: 545–548.
- 33 Compan V, Garrido J, Manzanares JA, Andres J, Esteve JS, Lopez ML. True and apparent oxygen permeabilities of contact-lenses. Optometry Vis Sci 1992; 69: 685–690.
- 34 Compan V, Lopez ML, Andrio A, Lopez-Alemany A, Refojo MF. Determination of the oxygen transmissibility and permeability of hydrogel contact lenses. J Appl Polym Sci 1999; 72: 321–327.
- 35 Compan V, Andrio A, Lopez-Alemany A, Riande E. New method to determine the true transmissibilities and permeabilities of oxygen in hydrogel membranes. Polymer 1999; 40: 1153–1158.
- 36 Compan V, Andrio A, Lopez-Alemany A, Riande E, Refojo MF. Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials 2002; 23: 2767–2772.
- 37 Compan V, Tiemblo P, Garcia F, Garcia JM, Guzman J, Riande E. A potentiostatic study of oxygen transport through poly (2-ethoxyethyl methacrylate-co−2,3-dihydroxypropylmethacrylate) hydrogel membranes. Biomaterials 2005; 26: 3783–3791.
- 38 Ferreira da Silva AR, Compañ V, González-Méijome JM. Reduction in ionic permeability of a silicone hydrogel contact lenses after one month of daily wear. Mater Res Express 2015; 2:6.
- 39 Tasaka M, Suzuki S, Ogawa Y, Kamaya M. Freezing and nonfreezing water in charged membranes. J Membr Sci 1988; 38: 175–183.
- 40 Mirejovsky D, Patel AS, Young G. Water properties of hydrogel contact lens materials: A possible predictive model for corneal desiccation staining. Biomaterials 1993; 14: 1080–1088.
- 41 Tranoudis I, Efron N. Water properties of soft contact lens materials. Contact Lens Anterior Eye 2004; 27: 193–208
- 42 Lai YC. The role of bulky polysiloxanylalkyl methacrylates in polyurethane-polysiloxane hydrogels. J Appl Polym Sci 1996; 60: 1193–1199.
- 43 Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci 1984; 25: 1161–1167.
- 44 Compan V, Oliveira C, Aguilella-Arzo M, Molla S, Peixoto-de-Matos SC, Gonzalez-Meijome JM. Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses. Investig Ophthalmol Vis Sci 2014; 55: 6421–6429.
- 45 Assev, GG. Electrolytes, Transport Phenomena: Methods for Calculation of Multicomponent Solutions and Experimental Data on Viscosities and Diffusion Coefficients. Moscow: Begell House; 1998. p 532.
- 46 Peng C-C, Kim J, Chauhan A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing Vitamin E diffusion barriers. Biomaterials 2010; 31: 4032–4047.
- 47 Vaitheeswaran S, Rasaiah JC, Hummer G. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J Chem Phys 2004; 121: 7955–7965.
- 48 Gonzalez-Meijome JM, Lopez-Alemany A, Almeida JB, Parafita MA, Refojo MF. Qualitative and quantitative characterization of the in vitro dehydration process of hydrogel contact lenses. J Biomed Mater Res B Appl Biomater 2007; 83B: 512–526.
- 49 Gonzalez-Meijome JM, Lopez-Alemany A, Lira M, Almeida JB, Oliveira MECDR, Parafita MA. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry. J Biomed Mater Res B Appl Biomater 2007; 80B: 184–191.
- 50 Gonzalez-Meijome JM, Lopez-Alemany A, Almeida JB, Parafita MA. Dynamic in vitro dehydration patterns of unworn and worn silicone hydrogel contact lenses. J Biomed Mater Res B Appl Biomater 2009; 90B: 250–258.
- 51 Gonzalez-Meijome JM, da Silva AC, Neves H, Lopes-Ferreira D, Queiros A, Jorge J. Clinical performance and “ex vivo” dehydration of silicone hydrogel contact lenses with two new multipurpose solutions. Contact Lens Anterior Eye 2013; 36: 86–92.
- 52 Martin-Montanez V, Lopez-Miguel A, Arroyo C, Mateo ME, Gonzalez-Meijome JM, Calonge M, Gonzalez-Garcia MJ. Influence of environmental factors in the in vitro dehydration of hydrogel and silicone hydrogel contact lenses. J Biomed Mater Res B Appl Biomater 2014; 102: 764–771.
- 53 Teson M, Lopez-Miguel A, Neves H, Calonge M, Gonzalez-Garcia MJ, Gonzalez-Meijome JM. Influence of climate on clinical diagnostic dry eye tests: Pilot study. Optometry Vis Sci 2015; 92: E284–E289.
- 54 Wolffsohn JS, Hunt OA, Basra AK. Simplified recording of soft contact lens fit. Contact Lens Anterior Eye 2009; 32: 37–42.
- 55 Sagle AC, Ju H, Freeman BD, Sharma MM. PEG-based hydrogel membrane coatings. Polymer 2009; 50: 756–766.
- 56 Grobe GL, Künzler JF, Seelye D, Salamone JC. Silicone hydrogels for contact lens applications. Polym Mater Sci Eng 1999; 80: 108–109.
- 57 Gonzalez-Meijome JM, Compan-Moreno V, Riande E. Determination of oxygen permeability in soft contact lenses using a polarographic method: Estimation of relevant physiological parameters. Indus Eng Chem Res 2008; 47: 3619–3629.