Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition
Corresponding Author
Julietta V. Rau
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome, Italy
Correspondence to: J. V. Rau; e-mail: [email protected]Search for more papers by this authorIlaria Cacciotti
Università di Roma “Niccolò Cusano”, Via Don Carlo Gnocchi, 3-00166 Rome, Italy
Dipartimento di Ingegneria dell'Impresa, Università di Roma “Tor Vergata”, UdR INSTM-“Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome, Italy
Search for more papers by this authorSara Laureti
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016 Monterotondo Scalo (RM), Italy
Search for more papers by this authorMarco Fosca
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome, Italy
Search for more papers by this authorGaspare Varvaro
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016 Monterotondo Scalo (RM), Italy
Search for more papers by this authorAlessandro Latini
Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro, 5-00185 Rome, Italy
Search for more papers by this authorCorresponding Author
Julietta V. Rau
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome, Italy
Correspondence to: J. V. Rau; e-mail: [email protected]Search for more papers by this authorIlaria Cacciotti
Università di Roma “Niccolò Cusano”, Via Don Carlo Gnocchi, 3-00166 Rome, Italy
Dipartimento di Ingegneria dell'Impresa, Università di Roma “Tor Vergata”, UdR INSTM-“Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome, Italy
Search for more papers by this authorSara Laureti
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016 Monterotondo Scalo (RM), Italy
Search for more papers by this authorMarco Fosca
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome, Italy
Search for more papers by this authorGaspare Varvaro
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00016 Monterotondo Scalo (RM), Italy
Search for more papers by this authorAlessandro Latini
Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro, 5-00185 Rome, Italy
Search for more papers by this authorAbstract
Aims: The aim of this work was to deposit silicon-substituted hydroxyapatite (Si-HAp) coatings on titanium for biomedical applications, since it is known that Si-HAp is able to promote osteoblastic cells activity, resulting in the enhanced bone ingrowth. Materials and Methods: Pulsed laser deposition (PLD) method was used for coatings preparation. For depositions, Si-HAp targets (1.4 wt % of Si), made up from nanopowders synthesized by wet method, were used. Results: Microstructural and mechanical properties of the produced coatings, as a function of substrate temperature, were investigated by scanning electron and atomic force microscopies, X-ray diffraction, Fourier transform infrared spectroscopy, and Vickers microhardness. In the temperature range of 400–600°C, 1.4–1.5 µm thick Si-HAp films, presenting composition similar to that of the used target, were deposited. The prepared coatings were dense, crystalline, and nanostructured, characterized by nanotopography of surface and enhanced hardness. Whereas the substrate temperature of 750°C was too high and led to the HAp decomposition. Moreover, the bioactivity of coatings was evaluated by in vitro tests in an osteoblastic/osteoclastic culture medium (α-Modified Eagle's Medium). Conclusions: The prepared bioactive Si-HAp coatings could be considered for applications in orthopedics and dentistry to improve the osteointegration of bone implants. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1621–1631, 2015.
REFERENCES
- 1 Long M, Rack HJ. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998; 19: 1621–1639.
- 2
Lacefield WR. Materials characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res 1999; 12: 21–26.
10.1177/08959374990130011001 Google Scholar
- 3 Hench LL. Biomaterials. Science 1980; 208: 826–831.
- 4
Hench LL. Introduction. In: LL Hench, J Wilson, editors. An introduction to bioceramics. Advanced Series in Ceramics, Vol. 1. Singapore: World Scientific Publishing Company; 1993. pp 41–62.
10.1142/9789814317351_0003 Google Scholar
- 5 Hench LL. Bioceramics: From concepts to clinic. J Am Ceram Soc 1991; 74: 1487–1510.
- 6 Moroni A, Caja VL, Egger EL, Trinchese L, Chao EYS. Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants. Biomaterials 1994; 8: 926–930.
- 7 Elliott JC. Structure and Chemistry of the Apatites and other Calcium Orthophosphates. Vol. 74. Amsterdam: Elsevier Science: 1994; pp 191–303.
- 8 Driessens FCM, Verbeeck MH. The mineral in tooth enamel and dental caries. In: FCM Driessens, MH Verbeeck, editors. Biominerals. Boca Raton: CRC Press; 1990. pp 105–143.
- 9 Carlisle EM. Silicon: A possible factor in bone calcification. Science 1970; 167: 279–280.
- 10 Hench LL. Biological implications. In: Sol–Gel Silica Properties, Processing and Technology Transfer. In: Hench LL, editor. USA: Noyes Publications; 1999. pp 16–163.
- 11
Camaioni A,
Cacciotti I,
Campagnolo L,
Bianco A. Silicon substituted hydroxyapatite for biomedical applications. In: M Mucalo, editor. Hydroxyapatite for Biomedical Applications. United Kingdom: Elsevier Ltd; 2015, Chapter 15, pp 343–373.
10.1016/B978-1-78242-033-0.00015-8 Google Scholar
- 12 Gibson I, Hing JA, Best S, Bonfield W. Enhanced in vitro cell activity and surface apatite layer formation on novel silicon substituted hydroxyapatites. Bioceramics 1999; 12: 191–194.
- 13 Patel N, Best S, Bonfield W, Gibson I, Hing K, Damien E, Revell P. A Comparitive Study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 2002; 13: 1199–1206.
- 14 Tonino A, Oosterbos C, Rahmy A, Therin M, Doyle C. Hydroxyapatite-coated acetabular components: Histological and histiomorphometric analysis of six cups retrieved at autopsy between three and seven years after successful implantation. J Bone Joint Surg Am 2001; 83: 817–825.
- 15 Hofmann AA, Bachus KN, Bloebaum RD. Comparative study of human cancellous bone remodelling to titanium and hydroxyapatite-coated implants. J Arthroplast 1993; 8: 157–166.
- 16 Sun L, Berndt CC, Gross KA, Kucuk A. Materials fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J Biomed Mater Res Appl Biomater 2001; 58; 570–592.
- 17 Gomes PS, Botelho C, Lopes MA, Santos JD, Fernandes MH. Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substrates. J Biomed Mater Res Part B Appl Biomater 2010; 94: 337–346.
- 18 Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. Int J Adhes Adhes 2014; 48: 238–257.
- 19 Kanasniemi IMO, Verheyen CCPM, Van der Velde EA, De Groot K. In vivo tensile testing of fluorapatite and hydroxylapatite plasma-sprayed coatings. J Biomed Mater Res 1994; 28: 563–572.
- 20 Dalton JE, Cook SD. In vivo mechanical and histological characteristics of ha-coated implants vary with coating vendor. J Biomed Mater Res 1995; 29: 239–245.
- 21 Thian E, Huang J, Vickers M, Best S, Barber Z, Bonfield W. Silicon-substituted hydroxyapatite (Si-HA): A novel calcium phosphate coating for biomedical applications. J Mater Sci 2006; 41: 709–717.
- 22 Hahn BD, Lee JM, Park DS, Choi JJ, Ryu J, Yoon WH, Lee BK, Shin DS, Kim HE. Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 2010; 518: 2194–2199.
- 23 Li DH, Lin J, Lin DY, Wang XX. Synthesized silicon-substituted hydroxyapatite coating on titanium substrate by electrochemical deposition. J Mater Sci Mater Med 2011; 22: 1205–1211.
- 24 Jiao MJ, Wang XX. Electrolytic deposition of magnesium substituted hydroxyapatite crystals on titanium substrate. Mater Lett 2009; 63: 2286–2289.
- 25 Hijon N, Cabanas M, Pena J, Vallet-Regi M. Dip coated silicon substituted hydroxyapatite films. Acta Biomater 2006; 2: 567–574.
- 26 Zhang E, Zou C, Zeng S. Preparation and characterization of silicon-substituted hydroxyapatite coating by a biomimetic process on titanium substrate. Surf Coat Technol 2009; 203: 1075–1080.
- 27 Solla EL, Borrajo JP, González P, Serra J, Chiussi S, Serra C, León B, García López J. Study of the composition transfer in the pulsed laser deposition of silicon substituted hydroxyapatite thin films. Appl Surf Sci 2007; 253: 8282–8286.
- 28 Yang Y, Paital SR, Dahotre NB. Effects of SiO2 substitution on wettability of laser deposited Ca-P biocoating on Ti-6Al-4V. J Mater Sci Mater Med 2010; 21: 2511–2521.
- 29 Rau JV, Generosi A, Laureti S, Komlev VS, Ferro D, Nunziante Cesaro S, Paci B, Rossi Albertini V, Agostinelli E, Barinov SM. Physico-chemical investigation of pulsed laser deposited carbonated hydroxyapatite films on titanium. ACS Appl Mater Interfaces 2009; 1: 1813–1820.
- 30 Rau JV, Smirnov VV, Laureti S, Generosi A, Varvaro G, Fosca M, Ferro D, Nunziante Cesaro S, Rossi Albertini V, Barinov SM. Properties of pulsed laser deposited fluorinated hydroxyapatite films on titanium. Mater Res Bull 2010; 45: 1304–1310.
- 31 Rau JV, Cacciotti I, De Bonis A, Fosca M, Komlev VS, Latini A, Santagata A, Teghil R. Fe-doped hydroxyapatite coatings for orthopaedic and dental implant applications. Appl Surf Sci 2014; 307: 301–305.
- 32 Bianco A, Cacciotti I, Lombardi M, Montanaro L. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability. Mater Res Bull 2009; 44: 345–354.
- 33 Lehmann G, Palmero P, Cacciotti I, Pecci R, Campagnolo L, Bedini R, Camaioni A, Bianco A, Siracusa G, Montanaro L. Design, production and biocompatibility of nanostructured porous HAp and Si-HAp ceramics as three dimensional scaffolds for stem cell culture and differentiation. Ceram Silik 2010; 54: 90–96.
- 34 Lehmann G, Cacciotti I, Palmero P, Montanaro L, Bianco A, Campagnolo L, Camaioni A. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites. Biomed Mater 2012; 7: 055001.
- 35 Balamurugan A, Rebelo AHS, Lemos AF, Rocha JHG, Ventura JMG, Ferreira JMF. Suitability evaluation of sol–gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater 2008; 24: 1374–1380.
- 36 Solla EL, Borrajo JP, Perez-Amor M. Pulsed laser deposition of silicon-substituted hydroxyapatite coatings. Vacuum 2008; 82: 1383–1385.
- 37 Solla EL, Borrajo JP, González P, Serra J, Chiussi S, Serra C, León B, García López J. Pulsed laser deposition of silicon substituted hydroxyapatite coatings from synthetical and biological sources. Appl Surf Sci 2007; 254: 1189–1193.
- 38 Rau JV, Fosca M, Cacciotti I, Laureti S, Bianco A, Teghil R. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 2013; 543: 167–170.
- 39 Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007; 28: 4023–4032.
- 40 Tang XL, Xiao XF, Liu RF. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett 2005; 59: 3841–3846.
- 41 Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviours. Biomaterials 2003; 24: 1389–1398.
- 42 International Centre for Diffraction Data, Database JCPDS, 2000.
- 43 Cricenti A, Generosi R, Barchesi C, Luce M, Rinaldi M. A multipurpose scanning near-field optical microscope: Reflectivity and photocurrent on semiconductor and biological samples. Rev Sci Instrum 1998; 69: 3240–3244.
- 44 Joensson B, Hogmark S. Hardness measurements of thin films. Thin Solid Films 1984; 114: 257–269.
- 45 Korsunsky AM, McGurk MR, Bull SJ, Page TF. On the hardness of coated systems. Surf Coat Technol 1998; 99: 171–183.
- 46 Combes C, Rey C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater 2010; 6: 3362–3378.
- 47 Yang ZBC, Uchida M, Kim HM, Zhang XD, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 2004; 25: 1003–1010.
- 48
Kim HM,
Miyaji F,
Kokubo T,
Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res A 1996; 32: 409–417.
10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 49 Destainville A, Champion E, Bernache-Assollant D, Laborde E. Synthesis, characterization and thermal behaviour of apatite tricalcium phosphate. Mater Chem Phys 2003; 80: 269–277.
- 50
Berzina-Cimdina L,
Borodajenko N. Research of calcium phosphates using fourier transform infrared spectroscopy. In: T Theophanides, editors. Infrared Spectroscopy-Materials Science, Engineering and Technology, Vol. 6. Switzerland: InTech.; 2012. pp 123–149.
10.5772/36942 Google Scholar
- 51 Han JK, Song HY, Saito F, Lee BT. Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater Chem Phys 2006; 99: 235–239.
- 52
Cleries L,
Fernandez-Pradas JM,
Morenza JL. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition. J Biomed Mater Res 2000; 49: 43–52.
10.1002/(SICI)1097-4636(200001)49:1<43::AID-JBM6>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 53 Blind O, Klein LH, Dailey B, Jordan L. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6Al-4V substrates. Dent Mater 2005; 21: 1017–1024.
- 54 Le Guèhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007; 23: 844–854.
- 55 Ferro D, Barinov SM, Rau JV, Teghil R, Latini A. Calcium phosphate and fluorinated calcium phosphate coatings on titanium deposited by Nd:YAG laser at a high fluence. Biomaterials 2005; 26: 805–812.
- 56 Pan H, Zhao X, Darvell BW, Lu WW. Apatite-formation ability predictor of bioactivity? Acta Biomater 2010; 6: 4181–4188.
- 57 Mandel S, Tas AC. Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5°C. Mater Sci Eng C 2010; 30: 245–254.
- 58 Lee JT, Leng Y, Chow KL, Ren F, Ge X, Wang K, Lu X. Cell culture medium as an alternative to conventional simulated body fluid. Acta Biomater 2011; 7: 2615–2622.
- 59 Guth K, Campion C, Buckland T, Hing K A. Effects of serum protein on ionic exchange between culture medium and microporous hydroxyapatite and silicate-substituted hydroxyapatite. J Mater Sci Mater Med 2011; 22: 2155–2164.