Magnesium biomaterials for orthopedic application: A review from a biological perspective
Corresponding Author
Jemimah Walker
Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
Correspondence to: J. Walker (e-mail: [email protected])Search for more papers by this authorShaylin Shadanbaz
Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
Search for more papers by this authorTimothy B. F. Woodfield
Department of Orthopaedic Surgery, University of Otago, Christchurch, New Zealand
Search for more papers by this authorMark P. Staiger
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Search for more papers by this authorGeorge J. Dias
Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
Search for more papers by this authorCorresponding Author
Jemimah Walker
Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
Correspondence to: J. Walker (e-mail: [email protected])Search for more papers by this authorShaylin Shadanbaz
Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
Search for more papers by this authorTimothy B. F. Woodfield
Department of Orthopaedic Surgery, University of Otago, Christchurch, New Zealand
Search for more papers by this authorMark P. Staiger
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Search for more papers by this authorGeorge J. Dias
Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
Search for more papers by this authorAbstract
Magnesium (Mg) has a long history of investigation as a degradable biomaterial. Physicians first began using Mg for biomedical applications in the late 19th century. Experimentation continued with varying levels of success until the mid-20th century when interest in the metal waned. In recent years the field of Mg-based biomaterials has once again become popular, likely due to advancements in technology allowing improved control of corrosion. Although this has led to success in vascular applications, continued difficulties in predicting and controlling the corrosion rate of Mg in an intraosseous environment has impeded the development of Mg-based biomaterials for orthopedic applications. In this review, an initial summary of the basic properties and the physiological role of Mg are followed by a discussion of the physical characteristics of the metal which lend it to use as a degradable biomaterial. A description of the historical and modern applications for Mg in the medical field is followed by a discussion of the methods used to control and assess Mg corrosion, with an emphasis on alloying. The second part of this review concentrates on the methods used to assess the corrosion and biocompatibility of Mg-based orthopedic biomaterials. This review provides a summary of Mg as a biomaterial from a biological perspective. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1316–1331, 2014.
REFERENCES
- 1Rude RK. Magnesium. Modern Nutrition in Health and Disease, 10th ed. Baltimore: Lippincott Williams and Wilkins; 2006. pp 224–47.
- 2Wolf FI, Cittadini A. Chemistry and biochemistry of magnesium. Mol Aspects Med 2003; 24: 3–9.
- 3Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. Biometals 2002; 15: 203–210.
- 4Rude RK, Singer FR. Magnesium deficiency and excess. Annu Rev Med 1981; 32: 245–259.
- 5Wester PO. Magnesium. Am J Clin Nutr 1987; 45(5 Suppl): 1305–1312.
- 6Touyz RM. Magnesium in clinical medicine. Front Biosci 2004; 9: 1278–1293.
- 7Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam a. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294: 1–26.
- 8Quamme GA, De Rouffignac C. Epithelial magnesium transport and regulation by the kidney. Front Biosci 2000; 5: D694–D711.
- 9Gums JG. Magnesium in cardiovascular and other disorders. Am J Health Syst Pharm 2004; 61: 1569–1576.
- 10Vormann J. Magnesium: Nutrition and metabolism. Mol Aspect Med 2003; 24: 27–37.
- 11Spiegel DM. Magnesium in chronic kidney disease: Unanswered questions. Blood Purif 2011; 31: 172–176.
- 12Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord 2003; 4: 195–206.
- 13Quamme GA. Renal magnesium handling: New insights in understanding old problems. Kidney Int 1997; 52: 1180–1195.
- 14Laires MJ, Monteiro CP, Bicho M. Role of cellular magnesium in health and human disease. Front Biosci 2004; 9: 262–276.
- 15Allan R, Mara N. Magnesium and the acute physician. Acute Med 2012; 11: 3–7.
- 16Friedrich H, Mordike B, editors. Magnesium Technology Metallurgy, Design Data, Applications. Berlin: Springer-Verlag; 2006.
- 17Baker H, Avedesian MM; ASM International. Handbook Committee. Magnesium and Magnesium Alloys. ASM Specialty Handbook. Materials Park, OH: ASM International; 1999. pp ix, 314.
- 18Ghali E, Dietzel W, Kainer KU. General and localized corrosion of magnesium alloys: A critical review. J Mater Eng Perform 2004; 13: 7–23.
- 19Mordike BL, Ebert T. Magnesium—Properties, applications, potential. Mater Sci Eng 2001; 302: 37–45.
- 20Gray JE, Luan B. Protective coatings on magnesium and its alloys—A critical review. J Alloys Comp 2002; 336: 88–113.
- 21Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006; 27: 1728–1734.
- 22Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for othopaedic implants—A review. Prog Mater Sci 2009; 54: 397–425.
- 23Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: Biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate immunity. 2013; 19: 213–224.
- 24Wang J, Yu W, Sandhu H, Betts F, Bhuta S, Delamarter R. Metal debris from titanium spinal implants. Spine 1999; 24: 899.
- 25St. Pierre C, Chan M, Iwakura Y, Ayers D, Kurt-Jones A, Finberg R. Periprosthetic osteollysis: Characterizing the innate immune response to titanium wear-particles. J Orthop Res 2010; 28: 1418–1424.
- 26Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1999; 1: 11–33.
10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 27Atrens A, Liu M, Zainal Abidin NI. Corrosion mechanicsm applicable to biodegradable magnesium implants. Mater Sci Eng B 2011; 176: 1609–1636.
- 28Song G, Atrens A. Understanding magnesium corrosion: A framework for improved alloy performance. Adv Eng Mater 2003; 5: 837–58.
- 29Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 2008; 10: B3–B14.
- 30Winzer N, Atrens A, Song GL, Ghali E, Dietzel W, Kainer KU, et al. A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv Eng Mater 2005; 7: 659–693.
- 31Bettman R, Zimmerman L. The use of metal clips in gastrointestinal anastomosis. Am J Digest Dis Nutr 1935; 2: 318–321.
10.1007/BF03000817 Google Scholar
- 32Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater 2010; 6: 1680–1692.
- 33Sherman W, Dinardo C, Bowers J. Ureteral transplant. Am J Surg 1935; 29: 54–57.
10.1016/S0002-9610(35)90929-1 Google Scholar
- 34Lambotte A. L'utilisation du magnesium comme materiel perdu dans l'osteosynthese. Bull Mem Soc Nat Cir. 1932; 28: 1325–1334.
- 35Groves E. Some clinicl and experimental observations on the operative treatment of fractures. Br Med J 1912; 1102–1105.
- 36Groves E. An experimental study of the operative treatment of fractures. Br J Surg 1913; 1: 438–501.
10.1002/bjs.1800010312 Google Scholar
- 37McBride E. Magnesium screw and nail transfixion in fractures. South Med J 1938; 31: 508–515.
10.1097/00007611-193805000-00010 Google Scholar
- 38McBride E. Absorbable metal in bone surgery. J Am Med Assoc 1938; 111: 2464–2467.
- 39Heublein B. Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart 2003; 89: 651–656.
- 40Zartner P, Cesnjevar R, Singer H, Weyand M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv 2005; 66: 590–594.
- 41Erbel R, Di Mario C, Bartunek J, Bonnier J, De Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial. Lancet 2007; 369: 1869–1875.
- 42Barlis P, Tanigawa J, Di Mario C. Coronary bioabsorbable magnesium stent: 15-month intravascular ultrasound and optical coherence tomography findings. Eur Heart J 2007; 28: 2319.
- 43Schranz D, Zartner P, Michel-Behnke I, Akinturk H. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheter Cardiovasc Interv 2006; 67: 671–673.
- 44Waksman R, Erbel R, Di Mario C, Bartunek J, De Bruyne B, Ilsley C, et al. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc Interv 2009; 2: 312–320.
- 45Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, et al. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomater 2011; 7: 1421–1428.
- 46Wang Q, Tan L, Xu W, Zhang B, Yang K. Dynamic behaviors of a Ca–P coated AZ31B magnesium alloy during in vitro and in vivo degradations. Mater Sci Eng B 2011; 176: 1718–1726.
- 47Duygulu O, Alper Kaya R, Oktay G, Arslan Kaya A. Investigation on the potential of magnesium alloy AZ31 as a bone implant. Mater Sci Forum 2007; 546-549: 421–424.
- 48Barfield W, Colbath G, DesJardins J, An Y, Hartsock L. The potential of magnesium alloy use in orthopaedic surgery. Curr Orthop Pract 2012; 23: 146–150.
10.1097/BCO.0b013e31824a553b Google Scholar
- 49Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today 2010; 13: 24–30.
- 50Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: An update. J Orthop Res 2005; 20–27.
- 51Sen MK, Miclau T. Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions? Injury 2007; 38S1: S75–S80.
- 52Sawin PD, Traynelis VC, Menezes AH. A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg 1998; 88: 255–265.
- 53Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 2003; 28: 134–139.
- 54Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 2007; 13: 1845–1866.
- 55Staiger MP, Kolbeinsson I, Kirkland NT, Nguyen T, Dias G, Woodfield TBF. Synthesis of topologically-ordered open-cell porous magnesium. Mater Lett 2010; 64: 2572–2574.
- 56Nguyen T, Staiger M, Dias G, Woodfield T. A novel manufacturing route for fabrication of topologically-ordered porous magnesium scaffolds. Adv Eng Mater 2011; 13: 872–881.
- 57Zhuang H, Han Y, Feng A. Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C 2008; 28: 1462–1466.
- 58Gu XN, Zhou WR, Zheng YF, Liu Y, Li YX. Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater Lett 2010; 64: 1871–1874.
- 59Wen C, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg. Scripta Mater 2001; 45: 1147–1153.
- 60Peng Q, Huang Y, Zhou L, Hort N, Kainer KU. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials 2010; 31: 398–403.
- 61Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV. Magnesium as a biodegradable and bioabsorbable material for medical implants. Jom 2009; 61: 31–34.
- 62Kirkland N. Magnesium biomaterials: Past present and future. Corrosion Eng Sci Technol 2012; 47: 322–328.
- 63Alvarez-Lopez M, Pereda MD, Del Valle J, Fernandez-Lorenzo M, Garcia-Alonso M, Ruano O, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater 2010; 6: 1763–1771.
- 64Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010; 31: 2084–2096.
- 65Liu C, Xin Y, Tang G, Chu P. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater Sci Eng A 2007; 456: 350–357.
- 66Song G, Bowles A, StJohn D. Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater Sci Eng A 2004; 366: 74–86.
- 67Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, et al. Magnesium alloys as implant materials–principles of property design for Mg-RE alloys. Acta Biomater 2010; 6: 1714–1725.
- 68Xin Y, Huo K, Hu T, Tang G. Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J Mater Res 2009; 24: 2711–2719.
- 69Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater 2011; 7: 3515–3522.
- 70Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2008; 12: 63–72.
- 71Wan YZ, Xiong GY, Luo HL, He F, Huang Y, Zhou XS. Preparation and characterization of a new biomedical magnesium-calcium alloy. Mater Design 2008; 29: 2034–2037.
- 72Song G, Atrens A, Wu X, Zhang B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Sci 1998; 40: 1769–1791.
- 73Pardo A, Merino M, Coya A, Arrabal R, Viejo F, Matykina E. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corrosion Sci 2008; 50: 823–834.
- 74Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 2011; 7: 1452–1459.
- 75Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009; 30: 484–498.
- 76Flaten T. Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer's disease), Parkinson's disease and amyotrophic lateral sclerosis in Norway. Envrion Geochem Health 1990; 12: 152–167.
- 77Wills M, Savory J. Aluminium poisoning: Dialysis, encephalopathy, osteomalacia and anaemia. Lancet 1983; 2: 29–34.
- 78Flaten T. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Res Bull 2001; 55: 187–196.
- 79Drynda A, Deinet N, Braun N, Peuster M. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. J Biomed Mater Res A 2008; 91: 360–369.
- 80Pinto R, Ferreira MGS, Carmezim MJ, Montemor MF. The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution. Electrochim Acta 2011; 56: 1535–1545.
- 81Johnson I, Perchy D, Liu H. In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. J Biomed Mater Res A 2011; 477–485.
- 82Drynda A, Hassel T, Hoehn R, Perz A, Bach F, Peuster M. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular application. J Biomed Mater Res A 2010; 93: 763–775.
- 83Haley T. Pharmacology and toxicology of the rare earth elements. J Pharm Sci 1965; 54: 663–670.
- 84Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 2010; 6: 1834–1842.
- 85Bruce D, Hietbrink B, DuBois K. The acute mammalian toxicity of rare earth nitrates and oxides. Toxicol Appl Pharmacol 1963; 5: 750–759.
- 86Erdmann N, Bondarenko A, Hewicker-Trautwein M, Angrisani N, Reifenrath J, Lucas A, et al. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: A comparative study in rabbits. Biomed Eng Online 2010; 9: 63.
- 87Salahshoor M, Guo Y. Biodegradabl orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials 2012; 5: 135–155.
- 88Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008; 29: 1329–1344.
- 89Kim WC, Kim JG, Lee JY, Seok HK. Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater Lett 2008; 62: 4146–4148.
- 90Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed 2004; 17: 544–553.
- 91Fell J, Meadows N, Khan K, Long S, Milla P, Reynolds A, et al. Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 1996; 347: 1218–1221.
- 92Xu L, Zhang E, Yin D, Zeng S, Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci Mater Med 2008; 19: 1017–1025.
- 93Zhang E, Yin D, Xu L, Yang L, Yang K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C 2009; 29: 987–993.
- 94Koh J, Choi D. Zinc toxicity on cultured cortical neurons: Involvement of N-methyl-d-aspartate receptors. Neuroscience 1994; 60: 1049–1057.
- 95Borovansky J, Riley P. Cytotoxicity of zinc in vitro. Chem Biol Interact 1989; 69: 279–291.
- 96Bennett D, Baird C, Chan K, Crookes P, Bremner C, Gottlieb M, et al. Zinc toxicity following massive coin ingestion. Am J Forensic Med Pathol 1997; 18: 148–153.
- 97Zhang W, Li M, Chen Q, Hu W, Zhang W, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr– Ca magnesium alloy for biomedical applications. Mater Des 2012; 39: 379–383.
- 98Lee D, Roberts M, Bluchel C, Odell R. Zirconium: Biomedical and Nephrological Applications. ASAIO J 2010; 56: 550–556.
- 99Saldana L, Mendez-Vilas A, Jiang L, Multigner M, Gonzalez-Carrasco J, Perez-Prado M, et al. In vitro biocompatibility of an ultrfine grained zirconium. Biomaterials 2007; 28: 4343–4354.
- 100Roy R, Lee K. Biomedical application of diamond-like carbon coatings: A review. J Biomed Mater Res Part B Appl Biomater 2007; 83: 72–84.
- 101Hornberger H, Virtanen S, Boccaccini A. Biomedical coatings on magnesium alloys—A review. Acta Biomater 2012; 8: 2442–2455.
- 102Wang J, Tang J, Zhang P, Li Y, Lai Y, Qin L. Surface modifications of magnesium alloys developed for bioabsorbable orthopedic implants: A general review. J Biomed Mater Res Part B Appl Biomater 2012; 100B: 1691–1701.
- 103Yang J, Cui F, Lee I. Surface modifications of magnesium alloys for biomedical application. Ann Biomed Eng 2011; 39: 1857–1871.
- 104Jo J-H, Kang B-G, Shin K-S, Kim H-E, Hahn B-D, Park D-S, et al. Hydroxyapatite coating on magnesium with MgF(2) interlayer for enhanced corrosion resistance and biocompatibility. J Mater Sci Mater Med 2011; 22: 2437–2447.
- 105Wang Y, Wei M, Gao JC. Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Mater Sci Eng C Biomimetic Supramol Syst 2009; 29: 1311–13116.
- 106Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, et al. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. Colloids Surf B Biointerfaces 2011; 88: 254–29.
- 107Yang JX, Cui FZ, Lee I-S, Zhang Y, Yin QS, Xia H, et al. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J Biomater Appl 2012; 27: 153–164.
- 108Shadanbaz S, Dias G. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomater 2012; 8: 20–30.
- 109Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 2009; 30: 1512–1523.
- 110Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials 2010; 31: 5782–5788.
- 111Yoshikawa H, Tamai N, Murase T, Myoui A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 2009; 6: 341–348.
- 112Carter J, Swearingen A, Chaput C, Rahm M. Clinical and radiographic assessment of transforaminal lumbar interbody fusion using HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate. Spine J 2009; 9: 434–438.
- 113Buchanan J, Fletcher D, Linsley P. Review of hydroxyapatite ceramic coated hip implants: A clinical and radiological evaluation with up to twenty year follow-up. J Bone Joint Surg Br 2012; 94: 113.
- 114Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater 2012; 8: 925–936.
- 115Lu P, Cao L, Liu Y, Xu X, Wu X. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res Part B Appl Biomater 2011; 96: 101–109.
- 116Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J Mater Sci Mater Med 2010; 21: 2623–2635.
- 117Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng C 2009; 29: 1559–1568.
- 118Gu XN, Li N, Zheng YF, Ruan L. In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Mater Sci Eng B 2011; 176: 1778–1784.
- 119Gao JC, Qiao LY, Xin RL. Corrosion and bone response of magnesium implants after surface modification by heat-self-assembled monolayer. Front Mater Sci China 2010; 4: 120–125.
10.1007/s11706-010-0029-9 Google Scholar
- 120Ambat R, Aung NN, Zhou W. Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy. J Appl Electrochem 2000; 30: 865–874.
- 121Ng WF, Chiu KY, Cheng FT. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater Sci Eng C 2010; 30: 898–903.
- 122Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 2007; 28: 2163–2174.
- 123Huan Z, Leeflang S, Zhou J, Zhai W, Chang J, Duszczyk J. In vitro degradation behavior and bioactivity of magnesium-Bioglass(®) composites for orthopedic applications. J Biomed Mater Res Part B Appl Biomater 2012; 100B: 437–446.
- 124Pietak A, Mahoney P, Dias GJ, Staiger MP. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med 2008; 19: 407–415.
- 125Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006; 27: 1013–1018.
- 126Xue D, Yun Y, Tan Z, Dong Z, Schulz MJ. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. J Mater Sci Technol 2012; 28: 261–267.
- 127Zhang SX, Li JA, Song Y, Zhao CL, Zhang XN, Xie CY, et al. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater Sci Eng C Mater Biol Appl 2009; 29: 1907–1912.
- 128Ren Y, Huang J, Zhang B, Yang K. Preliminary study of biodegradation of AZ31B magnesium alloy. Front Mater Sci China 2007; 1: 401–1404.
10.1007/s11706-007-0073-2 Google Scholar
- 129Wang Y, He Y, Zhu Z, Jiang Y, Zhang J, Niu J, et al. In vitro degradation and biocompatibility of Mg-Nd-Zn-Zr alloy. Chin Sci Bull 2012; 57: 2163–2170.
- 130Wang H, Estrin Y, Zuberova Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Lett 2008; 62: 2476–2479.
- 131Yang L, Zhang E. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng C 2009; 29: 1691–1696.
- 132Liu C, Xin Y, Tian X, Chu PK. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J Mater Res 2007; 22: 1806–1814.
- 133Kutniy KV, Papirov II, Tikhonovsky MA., Pikalov AI, Sivtzov SV, Pirozhenko LA., et al. Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants. Mater Sci Eng Technol 2009; 40: 242–246.
- 134Wang Y, Wei M, Gao J, Hu J, Zhang Y. Corrosion process of pure magnesium in simulated body fluid. Mater Lett 2008; 62: 2181–2184.
- 135Kirkland NT, Waterman J, Birbilis N, Dias G, Woodfield TBF, Hartshorn RM, et al. Buffer-regulated biocorrosion of pure magnesium. J Mater Sci Mater Med 2012; 23: 283–291.
- 136Zhou W, Shen T, Aung NN. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid. Corrosion Sci 2010; 52: 1035–1041.
- 137Zhang XP, Zhao ZP, Wu FM, Wang YL, Wu J. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. J Mater Sci 2007; 42: 8523–8528.
- 138Yu K, Chen L, Zhao J, Li S, Dai Y, Huang Q, et al. In vitro corrosion behavior and in vivo biodegradation of biomedical b-Ca3(PO4)2/Mg–Zn composites. Acta Biomater 2012; 8: 2845–2855.
- 139Wang H, Shi Z. In vitro biodegradation behaviour of magnesium and magnesium alloy. J Biomed Mater Res Part B Appl Biomater 2011; 98: 203–209.
- 140Schille C, Braun M, Wendel H, Scheideler L, Hort N, Reichel H, et al. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation. Mater Sci Eng B 2011; 176: 1797–1801.
- 141Ren Y, Wang H, Huang J, Zhang B, Yang K. Study of biodegradation of pure magnesium. Key Eng Mater 2007; 342-343: 601–604.
- 142Zhang W, Li M, Chen Q, Hu W, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications. Mater Design 2012; 39: 379–383.
- 143Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 2010; 6: 626–640.
- 144Yun Y, Dong ZY, Yang DE, Schulz MJ, Shanov VN, Yarmolenko S, et al. Biodegradable Mg corrosion and osteoblast cell culture studies. Mater Sci Eng C Mater Biol Appl 2009; 29: 1814–1821.
- 145Song G. Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater 2005; 7: 563–586.
- 146Krause A, Von der Hoh N, Bormann D, Krause C, Bach FW, Windhagen H, et al. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci 2010; 45: 624–632.
- 147Huehnerschulte TA, Angrisani N, Rittershaus D, Bormann D, Windhagen H, Meyer-Lindenberg A. In vivo corrosion of two novel magnesium alloys ZEK100 and AX30 and their mechanical suitability as biodegradable implants. Materials 2011; 4: 1144–1167.
- 148Makar G, Kruger J. Corrosion of magnesium. Int Mater Rev 1993; 38: 138–153.
- 149Thomann M, Krause C, Bormann D, Von der Höh N, Windhagen H, Meyer-Lindenberg A. Comparison of the resorbable magnesium alloys LAE442 und MgCa0.8 concerning their mechanical properties, their progress of degradation and the bone-implant-contact after 12 months implantation duration in a rabbit model. Mater Sci Eng Technol 2009; 40: 82–87.
- 150Denkena B, Lucas A. Biocompatible magnesium alloys as absorbable implant materials - Adjusted surface and subsurface properties by machining processes. Ann CIRP 2007; 56: 113–116.
- 151Remennik S, Bartsch I, Willbold E, Witte F, Shechtman D. New, fast corroding high ductility Mg–Bi–Ca and Mg–Bi–Si alloys, with no clinically observable gas formation in bone implants. Mater Sci Eng B 2011; 176: 1653–1659.
- 152Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater 2010; 6: 1824–1833.
- 153Brar HS, Wong J, Manuel MV. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 2012; 7: 87–95.
- 154Zhao MC, Liu M, Song GL, Atrens A. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corrosion Sci 2008; 50: 3168–3178.
- 155Liu CL, Wang YJ, Zeng RC, Zhang XM, Huang WJ, Chu PK. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corrosion Sci 2010; 52: 3341–3347.
- 156Xin Y, Huo K, Tao H, Tang G, Chu PK. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater 2008; 4: 2008–2015.
- 157Xin Y, Hu T, Chu PK. Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3-. Corrosion Sci 2011; 53: 1522–1528.
- 158Abidin N, Martin D, Atrens A. Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0.2Mn in Hank's solution at room temperature. Corrosion Sci 2011; 53: 862–872.
- 159Song G, Atrens A, St John D. A Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys. Magnesium Technology. New Orleans: TMS; 2001. pp 255–262.
10.1002/9781118805497.ch44 Google Scholar
- 160Rudd A, Breslin C, Mansfeld F. The corrosion protection afforded by rare earch conversion coatings applied to magnesium. Corrosion Sci 2000; 42: 275–288.
- 161Persaud-Sharma D, McGoron A. Biodegradable magnesium alloys: A review of material development and applications. J Biomimet Biomater Tissue Eng 2012; 12: 25–39.
- 162Kuang F, Zhang J, Zou C, Shi T, Wang Y, Zhang S, et al. Electrochemical methods for corrosion monitoring: A survey of recent patents. Recent Pat Corrosion Sci 2010; 2: 34–39.
- 163Frankel GS, Papavinasam S, Berke N, Brossia S, Dean SW. Electrochemical techniques in corrosion: Status, limitations, and needs. J ASTM Int 2008; 5: 101241.
10.1520/JAI101241 Google Scholar
- 164Seuss F, Seuss S, Turhan MC, Fabry B, Virtanen S. Corrosion of Mg alloy AZ91D in the presence of living cells. J Biomed Mater Res Part B Appl Biomater 2011; 99: 276–281.
- 165Song Y, Shan D, Chen R, Zhang F, Han E-H. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater Sci Eng C 2009; 29: 1039–1045.
- 166Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater 2010; 6: 1824–1833.
- 167Carboneras M, Garcia-Alonso M. Biodegradation kinetics of modified magnesium-based materials in cell culture medium. Corrosion Sci 2011; 53: 1433–1439.
- 168Kirkland NT, Birbilis N, Walker J, Woodfield T, Dies GJ, Steiger MP. In-vitro dissolution of magnesium-calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. J Biomed Mater Res Part B Appl Biomater 2010; 95: 91–100.
- 169Mueller WD, Lucia Nascimento M, Lorenzo de Mele MF. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 2010; 6: 1749–1755.
- 170Li Y, Wen C, Mushahary D, Sravanthi R, Harishankar N, Pande G, et al. Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater 2012; 8: 3177–3188.
- 171Zhang E, Yang L, Xu J, Chen H. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. Acta Biomater 2010; 6: 1756–1762.
- 172Hu J, Zhang C, Cui B, Bai K, Guan S, Wang L, et al. In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by sol–gel method. Appl Surf Sci 2011; 257: 8772–8777.
- 173Park RS, Kim YK, Lee SJ, Jang YS, Park IS, Yun YH, et al. Corrosion behavior and cytotoxicity of Mg-35Zn-3Ca alloy for surface modified biodegradable implant material. J Biomed Mater Res Part B Appl Biomater 2012; 100: 911–923.
- 174Del Gaudio C, Bagala P, Venturini M, Grandi C, Parnigotto P, Bianco A, et al. Assessment of in vitro temporal corrosion and cytotoxicity of AZ91D alloy. J Mater Sci Mater Med 2012; 23: 2553–2562.
- 175Rosalbino F, De Nigri S, Scavino G, Saccone A. Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application. J Biomed Mater Res Part A 2012; 101: 704–711.
- 176Zberg B, Uggowitzer PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 2009; 8: 887–891.
- 177Kannan MB, Raman RK. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 2008; 29: 2306–2314.
- 178Hornberger H, Witte F, Hort N, Mueller WD. Effect of fetal calf serum on the corrosion behaviour of magnesium alloys. Mater Sci Eng B 2011; 176: 1746–1755.
- 179Müller WD, Nascimento ML, Zeddies M, Córsico M, Gassa LM, De Mele MAFL. Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques. Mater Res 2007; 10: 5–10.
- 180Kannan MB. Influence of microstructure on the in-vitro degradation behaviour of magnesium alloys. Mater Lett 2010; 64: 739–742.
- 181Zheng YF, Gu XN, Xi YL, Chai DL. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater 2010; 6: 1783–1791.
- 182Walter R, Kannan MB. In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid. Mater Lett 2011; 65: 748–750.
- 183Rosalbino F, De Negri S, Saccone a, Angelini E, Delfino S. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications. J Mater Sci Mater Med 2010; 21: 1091–1098.
- 184Fekry A, El-Sherif R. Electrochemical corrosion behaviour of magnesium and titanium alloys in simulated body fluid. Electrochim Acta 2009; 54: 7280–7285.
- 185Song G, Atrens A, John DST, Wu X, Nairn J. The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Sci 1997; 39: 1981–2004.
- 186Song G, Atrens A, StJohn D, Nairn J, Li Y. The electrochemical corrosion of pure magnesium in 1N NaCl. Corrosion Sci 1997; 39: 855–875.
- 187Thomaz T, Weber C, Pelegrini T, Dick L, Knornschild G. The negative difference effect of magnesium and of the AZ91 alloy in chloride and stannate-containing solutions. Corrosion Sci 2010; 52: 2235–2243.
- 188Kirkland NT, Lespagnol J, Bribilis N, Staiger MP. A survey of bio-corrosion rates of magnesium alloys. Corrosion Sci 2010; 52: 287–291.
- 189Yang L, Hort N, Willumeit R, Feyerabend F. Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Eng Sci Technol 2012; 0: 1–5.
- 190Waizy H, Seitz J-M, Reifenrath J, Weizbauer A, Bach F-W, Meyer-Lindenberg A, et al. Biodegradable magnesium implants for orthopedic applications. J Mater Sci 2012; 48: 39–50.
- 191Lévesque J, Hermawan H, Dubé D, Mantovani D. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater 2008; 4: 284–295.
- 192Cho SY, Chae SW, Choi KW, Seok HK, Han HS, Yang SJ, et al. Load-bearing capacity and biological allowable limit of biodegradable metal based on degradation rate in vivo. J Biomed Mater Res Part B Appl Biomater 2012; 100: 1535–1544.
- 193Huehnerschulte TA, Reifenrath J, Von Rechenberg B, Dziuba D, Seitz JM, Bormann D, et al. In vivo assessment of the host reactions to the biodegradation of the two novel magnesium alloys ZEK100 and AX30 in an animal model. Biomed Eng Online 2012; 11: 14.
- 194Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J Mater Sci Mater Med 2012; 23: 805–812.
- 195Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26: 3557–3563.
- 196Xu LP, Yu GN, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res Part A 2007; 83A: 703–711.
- 197Zhang E, Xu L, Yu G, Pan F, Yang K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res Part A 2009; 90: 882–893.
- 198Wang D-W, Cao Y, Qiu H, Bi Z-G. Improved blood compatibility of Mg-1.0Zn-1.0Ca alloy by micro-arc oxidation. J Biomed Mater Res Part A 2011; 99: 166–172.
- 199ISO 10993-5 Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. Switzerland: International Organization for Standardization; 1999.
10.3403/01776181 Google Scholar
- 200ISO 10993-12 Biological Evaluation of Medical Devices Part 12: Sample preparation and reference materials. Switzerland: International Organization for Standardization; 2007.
- 201Altman F. Tetrazolium salts and formazans. Prog Histochem Cytochem 1976; 9: 1–51.
- 202Fischer J, Pröfrock D, Hort N, Willumeit R, Feyerabend F. Reprint of: Improved cytotoxicity testing of magnesium materials. Mater Sci Eng B 2011; 176: 1773–1777.
- 203Fischer J, Prosenc MH, Wolff M, Hort N, Willumeit R, Feyerabend F. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomater 2010; 6: 1813–1823.
- 204Li L, Gao J, Wang Y. Evaluation of cyto-toxicity and corrosion behaviour of alkali-heat-treated magnesium in simulated body fluid. Surface Coat Technol 2004; 185: 92–98.
- 205Lorenz C, Brunner JG, Kollmannsberger P, Jaafar L, Fabry B, Virtanen S. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater 2009; 5: 2783–2789.
- 206Zhao Y, Wu G, Jiang J, Wong H, Yeung K, Chu P. Improved corrosion resistance and cytocompatability of magnesium alloy by two-stage cooling in thermal treatment. Corrosion Sci 2012; 59: 360–365.
- 207Loos A, Rohde R, Haverich A, Barlach S. In vitro and in vivo biocompatibility testing of absorbable metal stents. Macromol Symp 2007; 253: 103–108.
- 208Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010; 31: 2084–2096.
- 209Yang C, Yuan G, Zhang J, Tang Z, Zhang X, Dai K. Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater 2010; 5: 045005.
- 210Fini M, Giardino R. In vitro and in vivo tests for the biological evaluation of candidate orthopedic materials: Benefits and limits. J Appl Biomater Biomech 2003; 1: 155–163.
- 211An Y, Woolf S, Friedman R. Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials 2000; 21: 2635–2652.
- 212ISO 10993-6 Biological Evaluation of Medical Devices Part 6: Tests for local effects after implantation. Switzerland: International Organization for Standardization; 2007.
- 213 ASTM F763-04: Standard Practice for Short-Term Screening of Implant Materials. West Conshohocken, PA: ASTM International; 2004.
- 214Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater 2010; 6: 1792–1799.
- 215Kaya RA, Cavuşoğlu H, Tanik C, Kaya AA, Duygulu O, Mutlu Z, et al. The effects of magnesium particles in posterolateral spinal fusion: An experimental in vivo study in a sheep model. Journal of neurosurgery. Spine 2007; 6: 141–149.
- 216Witte F, Reifenrath J, Müller PP, Crostack HA., Nellesen J, Bach FW, et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Mater Sci Eng Technol 2006; 37: 504–508.
- 217Reifenrath J, Krause a, Bormann D, Von Rechenberg B, Windhagen H, Meyer-Lindenberg A. Profound differences in the in-vivo-degradation and biocompatibility of two very similar rare-earth containing Mg-alloys in a rabbit model. Mater Sci Eng Technol 2010; 41: 1054–1061.
- 218Von der Höh N, Von Rechenberg B, Bormann D, Lucas A, Meyer-Lindenberg A. Influence of different surface machining treatments of resorbable magnesium alloy implants on degradation - EDX-analysis and histology results. Mater Sci Eng Technol 2009; 40: 88–93.
- 219Thomann M, Krause C, Angrisani N, Bormann D, Hassel T, Windhagen H, et al. Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. J Biomed Mater Res Part A 2010; 93: 1609–1619.
- 220Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling. J Biomed Mater Res A 2007; 81: 757–765.