Harnessing nerve–muscle cell interactions for biomaterials-based skeletal muscle regeneration
Naagarajan Narayanan
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorPaul Lengemann
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorKun Ho Kim
Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorLiangju Kuang
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorTiago Sobreira
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorVictoria Hedrick
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorUma K. Aryal
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorShihuan Kuang
Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorCorresponding Author
Meng Deng
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
Correspondence
Meng Deng, Department of Agricultural and Biological Engineering, School of Materials Engineering, Weldon School of Biomedical Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2093.
Email: [email protected]
Search for more papers by this authorNaagarajan Narayanan
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorPaul Lengemann
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorKun Ho Kim
Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorLiangju Kuang
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorTiago Sobreira
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorVictoria Hedrick
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorUma K. Aryal
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorShihuan Kuang
Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
Search for more papers by this authorCorresponding Author
Meng Deng
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
Correspondence
Meng Deng, Department of Agricultural and Biological Engineering, School of Materials Engineering, Weldon School of Biomedical Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2093.
Email: [email protected]
Search for more papers by this authorFunding information: National Institutes of Health, Grant/Award Number: R03AR068108; Purdue Startup Package
Abstract
Nerve cells secrete neurotrophic factors that play a critical role in neuronal survival, proliferation, and regeneration. However, their role in regulating myoblast behavior and skeletal muscle repair remains largely unexplored. In the present study, we investigated the effects of PC12 secreted signaling factors in modulating C2C12 myoblast behavior under physiologically relevant conditions. We showed that PC12 conditioned media modulated myoblast proliferation and differentiation in both 2D culture and 3D aligned electrospun fiber scaffold system in a dose-dependent manner. We further developed a biomimetic, tunable hydrogel consisting of hyaluronic acid, chondroitin sulfate, and polyethylene glycol as a 3D matrix encapsulating PC12 cells. The hydrogel-encapsulated PC12 cells promoted survival and proliferation of myoblasts in co-culture. Further proteomics analysis identified a total of 2,088 proteins from the secretome of the encapsulated PC12 cells and revealed the biological role and overlapping functions of nerve-secreted proteins for skeletal muscle regeneration, potentially through regulating myoblast behavior, nerve function, and angiogenesis. These experiments provide insights into the nerve–muscle interactions and pave the way for developing advanced biomaterials strategies incorporating nerve cell secretome for accelerated skeletal muscle regeneration.
Supporting Information
Filename | Description |
---|---|
jbma37022-sup-0001-supinfo.docxWord 2007 document , 8.3 MB | Appendix S1: Supporting information. |
jbma37022-sup-0001-TableS2.docxWord 2007 document , 470.8 KB | Table S2 MaxQuant search engine output for 5 M group. |
jbma37022-sup-0002-TableS3.docxWord 2007 document , 227.1 KB | Table S3 List of filtered peptides. |
jbma37022-sup-0003-TableS4.docxWord 2007 document , 36.1 KB | Table S4 List of SignalP predicted peptides. |
jbma37022-sup-0004-TableS5.docxWord 2007 document , 26.4 KB | Table S5 List of DeepLoc predicted peptides. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H., & Winther, O. (2017). DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics, 33, 3387–3395.
- Aregueta-Robles, U. A., Martens, P. J., Poole-Warren, L. A., & Green, R. A. (2019). Tissue engineered hydrogels supporting 3D neural networks. Acta Biomaterialia, 95, 269–284.
- Bencze, M., Negroni, E., Vallese, D., Yacoub-Youssef, H., Chaouch, S., Wolff, A., … Riederer, I. (2012). Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Molecular Therapy, 20, 2168–2179.
- Brown, K. J., Formolo, C. A., Seol, H., Marathi, R. L., Duguez, S., An, E., … Hathout, Y. (2012). Advances in the proteomic investigation of the cell secretome. Expert Review of Proteomics, 9, 337–345.
- Chierchia, A., Chirico, N., Boeri, L., Raimondi, I., Riva, G. A., Raimondi, M. T., … Albani, D. (2017). Secretome released from hydrogel-embedded adipose mesenchymal stem cells protects against the Parkinson's disease related toxin 6-hydroxydopamine. European Journal of Pharmaceutics and Biopharmaceutics, 121, 113–120.
- Chitramuthu, B. P., Bennett, H. P. J., & Bateman, A. (2017). Progranulin: A new avenue towards the understanding and treatment of neurodegenerative disease. Brain, 140, 3081–3104.
- Clegg, C. H., Linkhart, T. A., Olwin, B. B., & Hauschka, S. D. (1987). Growth factor control of skeletal muscle differentiation: Commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. The Journal of Cell Biology, 105, 949–956.
- Conovaloff, A., & Panitch, A. (2011). Characterization of a chondroitin sulfate hydrogel for nerve root regeneration. Journal of Neural Engineering, 8, 056003.
- Deng, M., Nair, L. S., Nukavarapu, S. P., Jiang, T., Kanner, W. A., Li, X., … Laurencin, C. T. (2010). Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials, 31, 4898–4908.
- Domenech, M., Yu, H., Warrick, J., Badders, N. M., Meyvantsson, I., Alexander, C. M., & Beebe, D. J. (2009). Cellular observations enabled by microculture: Paracrine signaling and population demographics. Integrative Biology, 1, 267–274.
- El-Habta, R., Kingham, P. J., & Backman, L. J. (2018). Adipose stem cells enhance myoblast proliferation via acetylcholine and extracellular signal–regulated kinase 1/2 signaling. Muscle & Nerve, 57, 305–311.
- Ellison-Hughes, G. M., & Madeddu, P. (2017). Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacology & Therapeutics, 171, 1–12.
- Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. Journal of Cell Biology, 166, 877–887.
- Gehmert, S., Wenzel, C., Loibl, M., Brockhoff, G., Huber, M., Krutsch, W., … Gehmert, S. (2014). Adipose tissue-derived stem cell secreted IGF-1 protects myoblasts from the negative effect of myostatin. BioMed Research International, 2014, 1–9.
- Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E. G., Sacco, A., Leonardi, N. A., Kraft, P., … Blau, H. M. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329, 1078–1081.
- Hu, S. Y., Tai, C. C., Li, Y. H., & Wu, J. L. (2012). Progranulin compensates for blocked IGF-1 signaling to promote myotube hypertrophy in C2C12 myoblasts via the PI3K/Akt/mTOR pathway. FEBS Letters, 586, 3485–3492.
- Jiang, C., Cano-Vega, M. A., Yue, F., Kuang, L., Narayanan, N., Uzunalli, G., … Deng, M. (2017). Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Molecular Therapy, 25, 1718–1729.
- Jiang, C., Kuang, L., Merkel, M. P., Yue, F., Cano-Vega, M. A., Narayanan, N., … Deng, M. (2015). Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat. Frontiers in Endocrinology, 6, 169.
- Jiang, Y. N., Zhao, J., Chu, F. T., Jiang, Y. Y., & Tang, G. H. (2018). Tension-loaded bone marrow stromal cells potentiate the paracrine osteogenic signaling of co-cultured vascular endothelial cells. Biology Open, 7, bio032482.
- Karumbaiah, L., Enam, S. F., Brown, A. C., Saxena, T., Betancur, M. I., Barker, T. H., & Bellamkonda, R. V. (2015). Chondroitin sulfate glycosaminoglycan hydrogels create endogenous niches for neural stem cells. Bioconjugate Chemistry, 26, 2336–2349.
- Kehl, D., Generali, M., Mallone, A., Heller, M., Uldry, A. C., Cheng, P., … Weber, B. (2019). Proteomic analysis of human mesenchymal stromal cell secretomes: A systematic comparison of the angiogenic potential. npj Regenerative Medicine, 4, 8.
- Kuang, L., Damayanti, N. P., Jiang, C., Fei, X., Liu, W., Narayanan, N., … Deng, M. (2019). Bioinspired glycosaminoglycan hydrogels via click chemistry for 3D dynamic cell encapsulation. Journal of Applied Polymer Science, 136, 47212.
- Lee, R. H., Pulin, A. A., Seo, M. J., Kota, D. J., Ylostalo, J., Larson, B. L., … Prockop, D. J. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.
- Li, Y. H., Chen, H. Y., Li, Y. W., Wu, S. Y., Wangta-Liu, Lin, G. H., … Wu, J. L. (2013). Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells. Scientific Reports, 3, 1176.
- Liang, K., Qiu, S., Lu, Y., & Fan, Z. (2014). Autocrine/paracrine erythropoietin regulates migration and invasion potential and the stemness of human breast cancer cells. Cancer Biology & Therapy, 15, 89–98.
- Mahmoud, A. I., O'Meara, C. C., Gemberling, M., Zhao, L., Bryant, D. M., Zheng, R., … Lee, R. T. (2015). Nerves regulate cardiomyocyte proliferation and heart regeneration. Developmental Cell, 34, 387–399.
- Mi, H., Muruganujan, A., Ebert, D., Huang, X., & Thomas, P. D. (2018). PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Research, 47, D419–D426.
- Mizisin, A. P., Steinhardt, R. C., O'Brien, J. S., & Calcutt, N. A. (2001). TX14(a), a prosaposin-derived peptide, reverses established nerve disorders in Streptozotocin-diabetic rats and prevents them in galactose-fed rats. Journal of Neuropathology and Experimental Neurology, 60, 953–960.
- Narayanan, N., Jiang, C., Uzunalli, G., Thankappan, S. K., Laurencin, C. T., & Deng, M. (2016). Polymeric electrospinning for musculoskeletal regenerative engineering. Regenerative Engineering and Translational Medicine, 2, 69–84.
- Narayanan, N., Jiang, C., Wang, C., Uzunalli, G., Whittern, N., Chen, D., … Deng, M. (2020). Harnessing fiber diameter-dependent effects of myoblasts toward biomimetic scaffold-based skeletal muscle regeneration. Frontiers in Bioengineering and Biotechnology, 8, 203.
- Nielsen, H. (2017). Predicting secretory proteins with SignalP. Protein Function Prediction: Methods and Protocols, 1611, 59–73.
- Pöyhönen, S., Er, S., Domanskyi, A., & Airavaara, M. (2019). Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Frontiers in Physiology, 10, 486.
- Pumberger, M., Qazi, T. H., Ehrentraut, M. C., Textor, M., Kueper, J., Stoltenburg-Didinger, G., … Geißler, S. (2016). Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials, 99, 95–108.
- Qazi, T. H., Mooney, D. J., Duda, G. N., & Geissler, S. (2017). Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials, 140, 103–114.
- Qazi, T. H., Mooney, D. J., Pumberger, M., Geissler, S., & Duda, G. N. (2015). Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomaterials, 53, 502–521.
- Sassoli, C., Pini, A., Chellini, F., Mazzanti, B., Nistri, S., Nosi, D., … Formigli, L. (2012). Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF. PLoS One, 7, e37512.
- Schubert, D., Herrera, F., Cumming, R., Read, J., Low, W., Maher, P., & Fischer, W. H. (2009). Neural cells secrete a unique repertoire of proteins. Journal of Neurochemistry, 109, 427–435.
- Sooreshjani, M. A., Gursoy, U. K., Aryal, U. K., & Sintim, H. O. (2018). Proteomic analysis of RAW macrophages treated with cGAMP or c-di-GMP reveals differentially activated cellular pathways. RSC Advances, 8, 36840–36851.
- Srivastava, A., Singh, S., Pandey, A., Kumar, D., Rajpurohit, C., Khanna, V., & Pant, A. (2018). Secretome of differentiated PC12 cells enhances neuronal differentiation in human mesenchymal stem cells via NGF-like mechanism. Molecular Neurobiology, 55, 8293–8305.
- Sun, C., Leu, S., Hsu, S. Y., Zhen, Y. Y., Chang, L. T., Tsai, C. Y., … Yip, H. K. (2015). Mixed serum-deprived and normal adipose-derived mesenchymal stem cells against acute lung ischemia-reperfusion injury in rats. American Journal of Translational Research, 7, 209–231.
- Tang, K., Pasqua, T., Biswas, A., Mahata, S., Tang, J., Tang, A., … Mahata, S. K. (2017). Muscle injury, impaired muscle function and insulin resistance in Chromogranin A-knockout mice. The Journal of Endocrinology, 232, 137–153.
- Tintignac, L. A., Brenner, H. R., & Ruegg, M. A. (2015). Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiological Reviews, 95, 809–852.
- Turner, N. J., & Badylak, S. F. (2012). Regeneration of skeletal muscle. Cell and Tissue Research, 347, 759–774.
- Van Ry, P. M., Wuebbles, R. D., Key, M., & Burkin, D. J. (2015). Galectin-1 protein therapy prevents pathology and improves muscle function in the mdx mouse model of Duchenne muscular dystrophy. Molecular Therapy, 23, 1285–1297.
- Wang, S., Guan, S., Xu, J., Li, W., Ge, D., Sun, C., … Ma, X. (2017). Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/gel scaffold for neural tissue engineering. Biomaterials Science, 5, 2024–2034.
- Waters, R., Alam, P., Pacelli, S., Chakravarti, A. R., Ahmed, R. P., & Paul, A. (2018). Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomaterialia, 69, 95–106.
- Xiao, N., & Le, Q. T. (2016). Neurotrophic factors and their potential applications in tissue regeneration. Archivum Immunologiae et Therapiae Experimentalis, 64, 89–99.