Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films
Junyu Chen
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
These authors contributed equally to this work.
Search for more papers by this authorXin Zhang
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
College of Chemistry, Sichuan University, Chengdu, Sichuan, 610041 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Chao Huang
College of Chemistry, Sichuan University, Chengdu, Sichuan, 610041 China
Correspondence to: C. Huang; e-mail: [email protected] J. Wang; e-mail: [email protected] X. Pei; e-mail: [email protected]Search for more papers by this authorHe Cai
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Search for more papers by this authorShanshan Hu
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Search for more papers by this authorQianbing Wan
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Search for more papers by this authorCorresponding Author
Xibo Pei
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Correspondence to: C. Huang; e-mail: [email protected] J. Wang; e-mail: [email protected] X. Pei; e-mail: [email protected]Search for more papers by this authorCorresponding Author
Jian Wang
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Correspondence to: C. Huang; e-mail: [email protected] J. Wang; e-mail: [email protected] X. Pei; e-mail: [email protected]Search for more papers by this authorJunyu Chen
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
These authors contributed equally to this work.
Search for more papers by this authorXin Zhang
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
College of Chemistry, Sichuan University, Chengdu, Sichuan, 610041 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Chao Huang
College of Chemistry, Sichuan University, Chengdu, Sichuan, 610041 China
Correspondence to: C. Huang; e-mail: [email protected] J. Wang; e-mail: [email protected] X. Pei; e-mail: [email protected]Search for more papers by this authorHe Cai
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Search for more papers by this authorShanshan Hu
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Search for more papers by this authorQianbing Wan
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Search for more papers by this authorCorresponding Author
Xibo Pei
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Correspondence to: C. Huang; e-mail: [email protected] J. Wang; e-mail: [email protected] X. Pei; e-mail: [email protected]Search for more papers by this authorCorresponding Author
Jian Wang
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041 China
Correspondence to: C. Huang; e-mail: [email protected] J. Wang; e-mail: [email protected] X. Pei; e-mail: [email protected]Search for more papers by this authorAbstract
As a new class of crystalline nanoporous materials, metal-organic frameworks (MOFs) have recently been used for biomedical applications due to their large surface area, high porosity, and theoretically infinite structures. To improve the biological performance of titanium, MOF films were applied to surface modification of titanium. Zn-based MOF films composed of zeolitic imidazolate framework-8 (ZIF-8) crystals with nanoscale and microscale sizes (nanoZIF-8 and microZIF-8) were prepared on porous titanium surfaces by hydrothermal and solvothermal methods, respectively. The ZIF-8 films were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The nanoZIF-8 film exhibited good biocompatibility, whereas the microZIF-8 film showed obvious cytotoxicity to MG63 cells. Compared to pure titanium and alkali- and heat-treated porous titanium, the nanoZIF-8 film not only enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and expression of osteogenic genes (ALP, Runx2) in MG63 cells but also inhibited the growth of Streptococcus mutans. These results indicate that MOF films or coatings may be promising candidates for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 834–846, 2017.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jbma35960-sup-0001-suppinfo.docx2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 2004; 47: 49–121.
- 2Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981; 52: 155–170.
- 3Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007; 23: 844–854.
- 4Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004; 350: 1422–1429.
- 5Kim HW, Koh YH, Li LH, Lee S, Kim HE. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials 2004; 25: 2533–2538.
- 6Pei X, Zeng Y, He R, Li Z, Tian L, Wang J, Wan Q, Li X, Bao H. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition. Appl Surf Sci 2014; 295: 71–80.
- 7Guillot R, Gilde F, Becquart P, Sailhan F, Lapeyrere A, Logeart-Avramoglou D, Picart C. The stability of BMP loaded polyelectrolyte multilayer coatings on titanium. Biomaterials 2013; 34: 5737–5746.
- 8Chen C, Kong X, Zhang SM, Lee IS. Characterization and in vitro, biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium. Appl Surf Sci 2014; 334: 62–68.
- 9Jin G, Cao H, Qiao Y, Meng F, Zhu H, Liu X. Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surf B: Biointerfaces 2014; 117: 158–165.
- 10Xin Y, Jiang J, Huo K, Hu T, Chu PK. Bioactive SrTiO3 nanotube arrays: Strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano 2009; 3: 3228–3234.
- 11Cao H, Liu X, Meng F, Chu P. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 2011; 32: 693–705.
- 12Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34: 3174–3183.
- 13Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1–review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004; 17: 536–543.
- 14Carradó A. Structural, microstructural, and residual stress investigations of plasma-sprayed hydroxyapatite on Ti-6Al-4 V. ACS Appl Mater Interfaces 2010; 2: 561–565.
- 15Maspoch D, Ruiz-Molina D. Old materials with new tricks: Multifunctional open-framework materials. J Veciana Chem Soc Rev 2007; 36: 770–818.
- 16Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005; 309: 2040–2042.
- 17Serre C, Mellotdraznieks C, Surblé S, Audebrand N, Filinchuk Y, Férey G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007; 315: 1828–1831.
- 18Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science 2003; 300: 1127–1129.
- 19Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT. Metal–organic framework materials as chemical sensors. Chem Rev 2011; 112: 1105–1125.
- 20Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem Soc Rev 2012; 41: 5262–5284.
- 21Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal–organic frameworks in biomedicine. Chem Rev 2011; 112: 1232–1268.
- 22McKinlay AC, Morris RE, Horcajada P, Férey G, Gref R, Couvreur P, Serre C. BioMOFs: Metal–organic frameworks for biological and medical applications. Angew Chem Int Edit 2010; 49: 6260–6266.
- 23Rieter WJ, Pott KM, Taylor KM, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 2008; 130: 11584–11585.
- 24Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 2008; 130: 6774–6780.
- 25Rieter WJ, Taylor KM, An H, Weili L, Wenbin Lin L. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 2006; 128: 9024–9025.
- 26Shieh FK, Wang SC, Yen CI, Wu CC, Dutta S, Chou LY, Morabito JV, Hu P, Hsu MH, Wu KC, Tsung CK. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: Size-selective sheltering of catalase in metal–organic framework microcrystals. J Am Chem Soc 2015; 137: 4276–4279.
- 27Hu Q, Yu J, Liu M, Liu A, Dou Z, Yang Y. (A low cytotoxic cationic metal–organic framework carrier for controllable drug release. J Med Chem 2014; 57: 5679–5685.
- 28Ren F, Yang B, Cai J, Jiang Y, Xu J, Wang S. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. J Hazard Mater 2014; 271: 283–291.
- 29Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 2010; 9: 172–178.
- 30Chalati T, Horcajada P, Couvreur P, Serre C, Ben Yahia M, Maurin G, Gref R. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine 2011; 6: 1683–1695.
- 31Ruyra À, Yazdi A, Espín J, Carné-Sánchez A, Roher N, Lorenzo J, Imaz I, Maspoch D. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal–organic framework nanoparticles. Chemistry 2015; 21: 2508–2518.
- 32Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 2006; 103: 10186–10191.
- 33Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 2011; 47: 2071–2073.
- 34Watt NT, Taylor DR, Kerrigan TL, Griffiths HH, Rushworth JV, Whitehouse IJ, Hooper NM. Prion protein facilitates uptake of zinc into neuronal cells. Nat Commun 2012; 23: 1134.
- 35Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011; 27: 4020–4028.
- 36Huo K, Zhang X, Wang H, Zhao L, Liu X, Chu PK. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 2013; 34: 3467–3478.
- 37Kwun IS, Cho YE, Lomeda RAR, Shin HI, Choi JY, Kang YH, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010; 46: 732–741.
- 38Shekhah O, Liu J, Fischer RA, Ch W. MOF thin films: Existing and future applications. Chem Soc Rev 2011; 40: 1081–1106.
- 39Hu Y, Dong X, Nan J, Jin W, Ren X, Xu N, Lee YM. Metal–organic framework membranes fabricated via reactive seeding. Chem Commun 2011; 47: 737–739.
- 40Hermes S, Schröder F, Chelmowski R, Wöll C, Fischer RA. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au (111). J Am Chem Soc 2005; 127: 13744–13745.
- 41Slenters TV, Sagué JL, Brunetto PS, Zuber S, Fleury A, Mirolo L, Robin AY, Meuwly M, Gordon O, Landmann R, Daniels AU, Fromm KM. Of chains and rings: Synthetic strategies and theoretical investigations for tuning the structure of silver coordination compounds and their applications. Materials 2010; 3: 3407–3429.
- 42Brunetto PS, Slenters TV, Fromm KM. Materials 2011; 4: 355–367. ()
- 43Huang A, Bux H, Steinbach F, Caro J. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew Chem Int Ed Engl 2010; 49: 4958–4961.
- 44Bux H, Chmelik C, van Baten JM, Krishna R, Caro J. Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling. Adv Mater 2010; 22: 4741–4743.
- 45Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 2009; 131: 16000–16001.
- 46Chosa N, Taira M, Saitoh S, Sato N, Araki Y. Characterization of apatite formed on alkaline-heat-treated Ti. J Dent Res 2004; 83: 465–469.
- 47Pan Y, Wang B, Lai Z. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. J Membrane Sci 2012; s421–422: 292–298.
- 48McCarthy MC, Varela-Guerrero V, Barnett GV, Jeong HK. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 2010; 26: 14636–14641.
- 49Venna SR, Carreon MA. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 2010; 132: 76–78.
- 50Cravillon J, Münzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 2009; 21: 1410–1412.
- 51European Pharmacopoeia 8.0. Strasbourg: Directorate for the Quality of Medicines and HealthCare of the Council of Europe, 2014.
- 52Palmiter RD. Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci U S A 2004; 101: 4918–4923.
- 53Fernández D, García-Gómez C, Babín M. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Total Environ 2013; 452–453: 262–274.
- 54Macdonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL. Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 2004; 25: 3135–3146.
- 55Tsukimura N, Yamada M, Iwasa F, Minamikawa H, Att W, Ueno Y, Saruwatari L, Aita H, Chiou WA, Ogawa T. Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Biomaterials 2011; 32: 4358–4368.
- 56Ueno T, Tsukimura N, Yamada M, Ogawa T. Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Biomaterials 2011; 32: 7297–7308.
- 57Zhang EW, Wang YB, Shuai KG, Gao F, Bai YJ, Cheng Y, Xiong XL, Zheng YF, Wei SC. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. Biomed Mater 2011; 6: 25001–25007.
- 58Kubo K, Tsukimura N, Iwasa F, Ueno T, Saruwatari L, Aita H, Chiou W, Ogawa T. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 2009; 30: 5319–5329.
- 59Variola F, Yi JH, Richert L, Wuest JD, Rosei F, Nanci A. Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 2008; 29: 1285–1298.
- 60Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 1996; 32: 409–417.
10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 61Nishio K, Neo M, Akiyama H, Nishiguchi S, Kim KH, Kokubo T, Nakamura T. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. J Biomed Mater Res 2000; 52: 652–661.
- 62Vignoletti F, Sanctis MD, Berglundh T, Abrahamsson I, Sanz M. Early healing of implants placed into fresh extraction sockets: an experimental study in the beagle dog. II: ridge alterations. J Clin Periodontol 2009; 36: 688–697.
- 63Östman PO, Wennerberg A, Ekestubbe A, Albrektsson T. Immediate occlusal loading of NanoTite™ tapered implants: A prospective 1–year clinical and radiographic study. Clin Implant Dent Relat Res 2013; 15: 809–818.
- 64Mendes VC, Moineddin R, Davies JE. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. Biomaterials 2007; 28: 4748–4755.
- 65Orsini G, Piattelli M, Scarano A, Petrone G, Kenealy J, Piattelli A, Caputi S. Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. J Periodontol 2007; 78: 209–218.
- 66Nishimura I, Huang Y, Butz F, Ogawa T, Lin A, Wang CJ. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration. Nanotechnology 2007; 18: 245101–245110.
- 67Lai M, Cai K, Hu Y, Yang X, Qin L. Regulation of the behaviors of mesenchymal stem cells by surface nanostructured titanium. Colloids Surf B: Biointerfaces 2012; 97: 211–220.
- 68Oliveira PTD, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 2004; 25: 403–413.
- 69Geng Z, Cui Z, Li Z, Zhu S, Liang Y, Lu WW, Yang X. Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite. J Mater Chem B 2015; 3: 3738–3746.
- 70Tanahashi M, Kamiya K, Suzuki T, Nasu H. Fibrous hydroxyapatite grown in the gel system: Effects of pH of the solution on the growth rate and morphology. J Mater Sci: Mater Med 1992; 3: 48–53.
- 71Tsuchiya H, Macak JM, Müller L, Kunze J, Müller F, Greil P, Virtanen S, Schmuki P. Hydroxyapatite growth on anodic TiO2 nanotubes. J Biomed Mater Res A 2006; 77: 534–541.
- 72Qiao Y, Zhang W, Tian P, Meng F, Zhu H, Jiang X, Liu X, Chu PK. Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials 2014; 35: 6882–6897.
- 73Yuan X, Smith RJ, Guan H, Ionita CN, Khobragade P, Dziak R, Liu Z, Pang M, Wang C, Guan G, Andreadis S, Yang S. Hybrid biomaterial with conjugated growth factors and mesenchymal stem cells for ectopic bone formation. Tissue Eng Part A 2016; 22: 928–939.
- 74Fielding GA, Smoot W, Bose S. Effects of SiO2, SrO, MgO, and ZnO dopants in tricalcium phosphates on osteoblastic Runx2 expression. J Biomed Mater Res A 2014; 102: 2417–2426.
- 75Yang F, Dong W, He F, Wang X, Zhao S, Yang G. Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg Oral Med: Oral Pathol Oral Radiol 2012; 113: 313–318.
- 76Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747–754.
- 77Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 1999; 274: 6972–6978.
- 78Li Y, Xiong W, Zhang C, Gao B, Guan H, Cheng H, Fu J, Li F. Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: In vitro and in vivo studies. J Biomed Mater Res A 2014; 102: 3939–3950.
- 79Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, Marshall GW. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O5–MgO– K2O–Na2O system) ions. Acta Biomater 2009; 5: 3536–3547.
- 80Palmiter RD. Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci U S A 2004; 101: 4918–4923.
- 81Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr 2004; 24: 151–172.
- 82Liu Y, Yan F, Yang WL, Lu XF, Wang WB. Effects of zinc transporter on differentiation of bone marrow mesenchymal stem cells to osteoblasts. Biol Trace Elem Res 2013; 154: 234–243.
- 83Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 2013; 52: 145–156.
- 84Kahler RA, Westendorf JJ. Lymphoid enhancer factor-1 and β-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem 2003; 278: 11937–11944.
- 85Huang YF, Lin JJ, Lin CH, Su Y, Hung SC. c-Jun N-terminal kinase 1 negatively regulates osteoblastic differentiation induced by BMP2 via phosphorylation of Runx2 at Ser104. J Bone Miner Res 2012; 27: 1093–1105.
- 86Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 2007; 282: 18676–18685.
- 87Baca P, Castillo AM, Baca AP, Liébana MJ, Junco P, Liébana J. Genotypes of Streptococcus mutans in saliva versus dental plaque. Arch Oral Biol 2008; 53: 751–754.
- 88Sato R, Sato T, Takahashi I, Sugawara J, Takahashi N. Profiling of bacterial flora in crevices around titanium orthodontic anchor plates. Clin Oral Implants Res 2007; 18: 21–26.
- 89Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109: 4644–4681.
- 90Li J, Wang G, Wang D, Wu Q, Jiang X, Liu X. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells. J Colloid Interf Sci 2014; 436: 160–170.