Suture materials — Current and emerging trends
Christopher Dennis
Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, Tamil Nadu, 632014 India
Search for more papers by this authorSwaminathan Sethu
GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, 560099 India
Search for more papers by this authorSunita Nayak
Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, Tamil Nadu, 632014 India
School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014 India
Search for more papers by this authorLoganathan Mohan
Surface Engineering Division, CSIR - National Aerospace Laboratories, Bangalore, Karnataka, 560017 India
Search for more papers by this authorYosry (Yos) Morsi
Biomechanical and Tissue Engineering Labs, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Australia
Search for more papers by this authorCorresponding Author
Geetha Manivasagam
Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, Tamil Nadu, 632014 India
Correspondence to: G. Manivasagam; e-mail: [email protected]Search for more papers by this authorChristopher Dennis
Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, Tamil Nadu, 632014 India
Search for more papers by this authorSwaminathan Sethu
GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, 560099 India
Search for more papers by this authorSunita Nayak
Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, Tamil Nadu, 632014 India
School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014 India
Search for more papers by this authorLoganathan Mohan
Surface Engineering Division, CSIR - National Aerospace Laboratories, Bangalore, Karnataka, 560017 India
Search for more papers by this authorYosry (Yos) Morsi
Biomechanical and Tissue Engineering Labs, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Australia
Search for more papers by this authorCorresponding Author
Geetha Manivasagam
Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, Tamil Nadu, 632014 India
Correspondence to: G. Manivasagam; e-mail: [email protected]Search for more papers by this authorAbstract
Surgical sutures are used to facilitate closure and healing of surgical- or trauma-induced wounds by upholding tissues together to facilitate healing process. There is a wide range of suture materials for medical purpose and the main types include absorbable and nonabsorbable. Recently, there is a growth in the development of classes of suture materials based on their properties and capabilities to improve tissue approximation and wound closure. This review outlines and discusses the current and emerging trends in suture technology including knotless barbed sutures, antimicrobial sutures, bio-active sutures such as drug-eluting and stem cells seeded sutures, and smart sutures including elastic, and electronic sutures. These newer strategies expand the versatility of sutures from being used as just a physical entity approximating opposing tissues to a more biologically active component enabling delivery of drugs and cells to the desired site with immense application potential in both therapeutics and diagnostics. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1544–1559, 2016.
REFERENCES
- 1Ethicon Inc., Wound Closure Manual; 2005. Available at: http://www.uphs.upenn.edu/surgery/Education/facilities/measey/Wound_Closure_Manual.pdf. (accessed December 12, 2014).
- 2Mackenzie D. The history of sutures. Med Hist 1973; 17: 158–168.
- 3Greenberg JA, Clark RM. Advances in suture material for obstetric and gynecologic surgery. Rev Obstet Gynecol 2009; 2: 146–158.
- 4Greenberg JA. The use of barbed sutures in obstetrics and gynecology. Rev Obstet Gynecol 2010; 3: 82–91.
- 5Global Sutures Market Research Report; 2015. Available at: http://www.micromarketmonitor.com/market-report/sutures-reports-1632640670.html. (accessed August 19, 2015).
- 6Demand for surgical sutures high: Rise in surgical procedures performed globally; 2013. Available at: http://www.advacarepharma.com/en/pharmaceuticals-news/item/540-demand-for-surgical-sutures-high.html. (accessed May 19, 2015).
- 7Edlich RF. Surgical Knot tying manual, 3rd ed. In: Covidien. Surgical Knot tying manual. 2008. Available at: http://www.covidien.com/imageServer.aspx?contentID=11850&contenttype=application/pdf. (accessed February 13, 2014).
- 8Hochberg J, Meyer KM, Marion MD. Suture choice and other methods of skin closure. Surg Clin North Am 2009; 89: 627–641.
- 9Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: An introduction to materials in medicine. Applications of Materials in Medicine and Dentistry, Academic Press; 1996. p 356–359.
- 10Kowalsky MS, Dellenbaugh SG, Erlichman DB, Gardner TR, Levine WN, Ahmad CS. Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone. Arthroscopy 2008; 24: 329–334.
- 11Trimbos J, Brohim R, Van Rijssel E. Factors relating to the volume of surgical knots. Int J Gynecol Obstet 1989; 30: 355–359.
- 12Molokova O, Kecherukov A, Aliev FS, Chernov I, Bychkov V, Kononov V. Tissue reactions to modern suturing material in colorectal surgery. Bull Exp Biol Med 2007; 143: 767–770.
- 13Khan M, Bann S, Darzi A, Butler P. Suturing: A lost art. Ann R Coll Surg Engl 2002; 84: 278–279.
- 14Bucknall TE. Factors influencing wound complications: A clinical and experimental study. Ann R Coll Surg Engl 1983; 65: 71–77.
- 15Geiger D, Debus E-S, Ziegler UE, Larena-Avellaneda A, Frosch M, Thiede A, Dietz UA. Capillary activity of surgical sutures and suture-dependent bacterial transport: A qualitative study. Surg Infect 2005; 6: 377–383.
- 16Ajcamo JH. Surgical suture. US patent No. 3,123,077, 1964.
- 17Tera H, Aberg C. Tensile strengths of twelve types of knot employed in surgery, using different suture materials. Acta Chir Scand 1975; 142: 1–7.
- 18Tera H, Aberg C. Strength of knots in surgery in relation to type of knot, type of suture material and dimension of suture thread. Acta Chir Scand 1976; 143: 75–83.
- 19Kim J-C, Lee Y-K, Lim B-S, Rhee S-H, Yang H-C. Comparison of tensile and knot security properties of surgical sutures. J Mater Sci Mater Med 2007; 18: 2363–2369.
- 20Stone I, Von Fraunhofer J, Masterson B. The biomechanical effects of tight suture closure upon fascia. Surg Gynecol Obstet 1986; 163: 448–452.
- 21Van Rijssel E, Brand R, Admiraal C, Smit I, Trimbos J. Tissue reaction and surgical knots: The effect of suture size, knot configuration, and knot volume. Obstet Gynecol 1989; 74: 64–68.
- 22Berguer R, Smith W, Chung Y. Performing laparoscopic surgery is significantly more stressful for the surgeon than open surgery. Surg Endosc 2001; 15: 1204–1207.
- 23Berguer R, Chen J, Smith WD. A comparison of the physical effort required for laparoscopic and open surgical techniques. Arch Surg 2003; 138: 967–970.
- 24Kadirkamanathan SS, Shelton JC, Hepworth CC, Laufer J, Swain CP. A comparison of the strength of knots tied by hand and at laparoscopy. J Am Coll Surg 1996; 182: 46–54.
- 25Dattilo PP Jr, King MW, Cassill NL, Leung JC. Medical textiles: Application of an absorbable barbed bi-directional surgical suture. J Textile Apparel Technol Manag 2002; 2: 1–5.
- 26Leung JC. Barbed suture technology: Recent advances. Adv Biomed Textiles Healthc Prod 2004: 165–183.
- 27Bartlett L. Pressure necrosis is the primary cause of wound dehiscence. Can J Surg 1985; 28: 27–30.
- 28Högström H, Haglund U, Zederfeldt B. Tension leads to increased neutrophil accumulation and decreased laparotomy wound strength. Surgery 1990; 107: 215–219.
- 29Seitz JM, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: A critical review. Adv Healthc Mater 2015; 4: 1915–1936.
- 30Seitz JM, Wulf E, Freytag P, Bormann D, Bach FW. The manufacture of resorbable suture material from magnesium. Adv Eng Mater 2010; 12: 1099–1105.
- 31Miller GLJ. Silk Technique: Its role in wound healing. Can Med Assoc J 1938; 38: 358–62.
- 32Najibi S, Banglmeier R, Matta J, Tannast M. Material properties of common suture materials in orthopaedic surgery. Iowa Orthop J 2010; 30: 84–88.
- 33McDonald E, Gordon J, Buckley J, Gordon L. Comparison of a multifilament stainless steel suture with FiberWire for flexor tendon repairs—An in vitro biomechanical study. J Hand Surg (European Volume) 2013; 38: 418–423.
- 34Arthrex—Fiberwire Braided Composite Suture; 2005. Available at: http://www.shoulderdoc.co.uk/documents/arthrex_fiberwire.pdf. (accessed January 6, 2014).
- 35Brumme S, Löwicke G, Knöfler W. [The use of tantalum wire as a suture material]. Zeitschrift Fur Experimentelle Chirurgie, Transplantation, Und Kunstliche Organe: Organ Der Sektion Experimentelle Chirurgie Der Gesellschaft Fur Chirurgie Der DDR 1988; 22: 308–313.
- 36Angiotech Pharmaceuticals, Quill™ SRS materials guide; 2009. Available at: http://www.mana-tech.com/factsheets/quillproductcat.pdf. (accessed January 5, 2014).
- 37Kirsch D, Marczyk S. Multifilament barbed suture. US Patent No. 8414612 B2, 2013.
- 38Lombardi AV Jr, Berend KR, Adams JB. Advancing Suture Technology: A Stitch in Time. Seminars in Arthroplasty. 2011; 22(3): 179–181.
- 39Ingle N, King M, Zikry M. Finite element analysis of barbed sutures in skin and tendon tissues. J Biomech 2010; 43: 879–886.
- 40Ingle N, King M. Optimizing the tissue anchoring performance of barbed sutures in skin and tendon tissues. J Biomech 2010; 43: 302–309.
- 41Oni G, Brown SA, Kenkel JM. A comparison between barbed and nonbarbed absorbable suture for fascial closure in a porcine model. Plast Reconstr Surg 2012; 130: 535e–540e.
- 42Paul MD. Barbed sutures for aesthetic facial plastic surgery: Indications and techniques. Clin Plast Surg 2008; 35: 451–461.
- 43Rosen AD. Use of absorbable running barbed suture and progressive tension technique in abdominoplasty: A novel approach. Plast Reconstr Surg 2010; 125: 1024–1027.
- 44Murtha AP, Kaplan AL, Paglia MJ, Mills BB, Feldstein ML, Ruff GL. Evaluation of a novel technique for wound closure using a barbed suture. Plast Reconstr Surg 2006; 117: 1769–1780.
- 45Villa MT, White LE, Alam M, Yoo SS, Walton RL. Barbed sutures: A review of the literature. Plast Reconstr Surg 2008; 121: 102e–108e.
- 46Greenberg JA, Goldman RH. Barbed suture: A review of the technology and clinical uses in obstetrics and gynecology. Rev Obstet Gynecol 2013; 6: 107–115.
- 47Rosenberg AG. The use of a barbed suture in hip and knee replacement wound closure. Seminars in Arthroplasty; 2013; 24(3): 132–134.
- 48Kaul S, Sammon J, Bhandari A, Peabody J, Rogers CG, Menon M. A novel method of urethrovesical anastomosis during robot-assisted radical prostatectomy using a unidirectional barbed wound closure device: Feasibility study and early outcomes in 51 patients. J Endourol 2010; 24: 1789–1793.
- 49Zaruby J, Gingras K, Taylor J, Maul D. An in vivo comparison of barbed suture devices and conventional monofilament sutures for cosmetic skin closure biomechanical wound strength and histology. Aesthet Surg J 2011; 31: 232–240.
- 50Schwarzkopf R, Hadley S, Weatherall JM, Gross SC, Marwin SE. Barbed sutures for arthroplasty closure. Bull NYU Hosp Jt Dis 2012; 70: 250–253.
- 51Ethicon. Wound Closure Overview; 2010–2015. Available at: http://www.ethicon.com/healthcare-professionals/products/wound-closure#!sutures. (accessed January 4, 2016).
- 52Williams SF, Rizk S, Martin DP. Poly-4-hydroxybutyrate (P4HB): A new generation of resorbable medical devices for tissue repair and regeneration. Biomed Tech/Biomed Eng 2013; 58: 439–452.
- 53Levine BR, Ting N, Della Valle CJ. Use of a barbed suture in the closure of hip and knee arthroplasty wounds. Orthopedics 2011; 34: 672.
- 54Clinical Trial data: Use of knotless suture for closure of total hip and knee arthoplasties (Registration number: NCT00834483). Available at: https://clinicaltrials.gov/ct2/show/NCT00834483?term=NCT00834483&rank=1. (accessed November 22, 2014).
- 55Valero R, Schatloff O, Chauhan S, HwiiKo Y, Sivaraman A, Coelho R, Palmer K, Davila H, Patel V. Bidirectional barbed suture for bladder neck reconstruction, posterior reconstruction and vesicourethral anastomosis during robot-assisted radical prostatectomy. Actas Urológicas Españolas (English Edition) 2012; 36: 69–74.
10.1016/j.acuroe.2012.04.001 Google Scholar
- 56Bogliolo S, Nadalini C, Iacobone AD, Musacchi V, Carus AP. Vaginal cuff closure with absorbable bidirectional barbed suture during total laparoscopic hysterectomy. Eur J Obstet Gynecol Reprod Biol 2013; 170: 219–221.
- 57Einarsson JI, Cohen SL, Gobern JM, Sandberg EM, Hill-Lydecker CI, Wang K, Brown DN. Barbed versus standard suture: A randomized trial for laparoscopic vaginal cuff closure. J Minim Invasive Gynecol 2013; 20: 492–498.
- 58Clinical Trial data: Barbed suture vs. smooth suture for vaginal cuff closure (Registration number: NCT01262573). Available at: https://clinicaltrials.gov/ct2/show/NCT01262573?term=NCT01262573&rank=1. (accessed November 22, 2014).
- 59Einarsson JI, Vellinga TT, Twijnstra AR, Chavan NR, Suzuki Y, Greenberg JA. Bidirectional barbed suture: An evaluation of safety and clinical outcomes. JSLS 2010; 14: 381–385.
- 60Ghomi A, Askari R. Use of a bidirectional barbed suture in robot-assisted sacrocolpopexy. J Robotic Surg 2010; 4: 87–89.
10.1007/s11701-010-0188-9 Google Scholar
- 61Clinical Trial data: Affixing polypropylene mesh using barbed suture (Quill™ SRS) during laparoscopic sacrocolpopexy randomized trial (Quill Lsc) (Registration number: NCT01551992). Available at: https://clinicaltrials.gov/ct2/show/NCT01551992?term=NCT01551992&rank=1. (accessed November 22, 2014).
- 62Gililland JM, Anderson LA, Sun G, Erickson JA, Peters CL. Perioperative closure-related complication rates and cost analysis of barbed suture for closure in TKA. Clin Orthop Relat Res 2012; 470: 125–129.
- 63Clinical Trial data: Analysis of standard versus barbed sutures in primary total knee arthroplasty (Registration number: NCT01320371). Available at: https://clinicaltrials.gov/ct2/show/NCT01320371?term=NCT01320371&rank=1. (accessed November 22, 2014).
- 64Covidien, V-Loc™ Wound closure devices. 2011. Available at: http://surgical.covidien.com/imageserver.aspx/v-loc-wound-closure-devices-product-overview.pdf?contentID=39624&contenttype=application/pdf. (accessed January 5, 2014).
- 65Norton MR, The barbed suture and its use in oral surgery. PPD 2011; 1: 115–120.
- 66Shah HN, Nayyar R, Rajamahanty S, Hemal AK. Prospective evaluation of unidirectional barbed suture for various indications in surgeon-controlled robotic reconstructive urologic surgery: Wake Forest University experience. Int Urol Nephrol 2012; 44: 775–785.
- 67Sammon J, Petros F, Sukumar S, Bhandari A, Kaul S, Menon M, Rogers C. Barbed suture for renorrhaphy during robot-assisted partial nephrectomy. J Endourol 2011; 25: 529–533.
- 68Olweny EO, Park SK, Seideman CA, Best SL, Cadeddu JA. Self-retaining barbed suture for parenchymal repair during laparoscopic partial nephrectomy; initial clinical experience. BJU Int 2012; 109: 906–909.
- 69Erdem S, Tefik T, Mammadov A, Ural F, Oktar T, Issever H, Nane I, Sanli O. The use of self-retaining barbed suture for inner layer renorrhaphy significantly reduces warm ischemia time in laparoscopic partial nephrectomy: Outcomes of a matched-pair analysis. J Endourol 2013; 27: 452–458.
- 70Jeon SH, Jung S, Son H-S, Kimm SY, Chung BI. The unidirectional barbed suture for renorrhaphy during laparoscopic partial nephrectomy: Stanford experience. J Laparoendosc Adv Surg Tech A 2013; 23: 521–525.
- 71Borahay MA, Oge T, Walsh TM, Patel PR, Rodriguez AM, Kilic GS. Outcomes of robotic sacrocolpopexy using barbed delayed absorbable sutures. J Minim Invasive Gynecol 2014; 21: 412–416.
- 72Tewari AK, Srivastava A, Sooriakumaran P, Slevin A, Grover S, Waldman O, Rajan S, Herman M, Berryhill R Jr, Leung R. Use of a novel absorbable barbed plastic surgical suture enables a “self-cinching” technique of vesicourethral anastomosis during robot-assisted prostatectomy and improves anastomotic times. J Endourol 2010; 24: 1645–1650.
- 73Manganiello M, Kenney P, Canes D, Sorcini A, Moinzadeh A. Unidirectional barbed suture versus standard monofilament for urethrovesical anastomosis during robotic assisted laparoscopic radical prostatectomy. Int Braz J Urol 2012; 38: 89–96.
- 74Aesculap B. Braun Closure Technologies, 2007. Available at: https://www.aesculapusa.com/assets/base/doc/DOC585_REV_B-Sutures_Brochure.pdf. (accessed August 24, 2015).
- 75GORE-TEX® Suture; 2012. Available at: http://www.goremedical.com/resources/dam/assets/AM0136ML2.GTS.IFU_EN.pdf. (accessed November 28, 2014).
- 76Assuplus® Suture. Available at: http://www.assuteurope.com/public/pdf/Assuplus.pdf. (accessed July 2, 2015).
- 77Joyce CW, Sugrue C, Chan JC, Delgado L, Zeugolis D, Carroll SM, Kelly JL. A barbed suture repair for flexor tendons: A novel technique with no exposed barbs. Plast Reconstr Surg Glob Open 2014; 2: e237.
- 78Pillai CKS, Sharma CP. Review paper: Absorbable polymeric surgical sutures: Chemistry, production, properties, biodegradability, and performance. J Biomater Appl 2010; 25: 291–366.
- 79Postlethwait R. Long-term comparative study of nonabsorbable sutures. Ann Surg 1970; 171: 892–898.
- 80Miyagi KPM. How to choose a suture? Br J Hosp Med 2015; 76: C46–C48.
- 81Leaper D, McBain AJ, Kramer A, Assadian O, Sanchez JLA, Lumio J, Kiernan M. Healthcare associated infection: Novel strategies and antimicrobial implants to prevent surgical site infection. Ann R Coll Surg Engl 2010; 92: 453
- 82Elek SD, Conen P. The virulence of Staphylococcus pyogenes for man. A study of the problems of wound infection. Br J Exp Pathol 1957; 38: 573–586.
- 83Alexander JW, Kaplan JZ, Altemeier W. Role of suture materials in the development of wound infection. Ann Surg 1967; 165: 192–199.
- 84Chu C, Tsai W, Yao J, Chiu SS. Newly made antibacterial braided nylon sutures. I. In vitro qualitative and in vivo preliminary biocompatibility study. J Biomed Mater Res 1987; 21: 1281–1300.
- 85Ludewig R, Rudolf L, Wangensteen S. Reduction of experimental wound infection with iodized gut sutures. Surg Gynecol Obstet 1971; 133: 946–948.
- 86LeVeen HH, Falk G, Mazzapica FA, Dennis C. The suppression of experimental wound infections by biocidal sutures. Surgery 1968; 64: 610–613.
- 87Rodeheaver GT, Kurtz LD, Bellamy WT, Smith SL, Farris H, Edlich RF. Biocidal braided sutures. Arch Surg 1983; 118: 322–327.
- 88Labhasetwar V, Bonadio J, Goldstein S, Chen W, Levy RJ. A DNA controlled-release coating for gene transfer: Transfection in skeletal and cardiac muscle. J Pharm Sci 1998; 87: 1347–1350.
- 89Loh A. Controlled Release of Drugs from Surgical Suture. Massachusetts: Institute of Technology; 1987.
- 90Shibuya TY, Wei W-Z, Zormeier M, Ensley J, Sakr W, Mathog RH, Meleca RJ, Yoo G, June CH, Levine B. Anti-CD3/anti-CD28 monoclonal antibody–coated suture enhances the immune response of patients with head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1999; 125: 1229–1234.
- 91Shibuya TY, Kim S, Nguyen K, Parikh P, Wadhwa A, Brockardt C, Do J. Covalent linking of proteins and cytokines to suture: Enhancing the immune response of head and neck cancer patients. Laryngoscope 2003; 113: 1870–1884.
- 92Lee JS, Lu Y, Baer GS, Markel MD, Murphy WL. Controllable protein delivery from coated surgical sutures. J Mater Chem 2010; 20: 8894–8903.
- 93Horváthy DB, Vácz G, Cselenyák A, Weszl M, Kiss L, Lacza Z. Albumin-coated bioactive suture for cell transplantation. Surg Innov 2013; 20: 249–255.
- 94Cummings SH, Grande DA, Hee CK, Kestler HK, Roden CM, Shah NV, Razzano P, Dines DM, Chahine NO, Dines JS. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: A histological and biomechanical study. J Tissue Eng 2012; 3: 2041731412453577
10.1177/2041731412453577 Google Scholar
- 95Dines JS, Weber L, Razzano P, Prajapati R, Timmer M, Bowman S, Bonasser L, Dines DM, Grande DP. The effect of growth differentiation factor-5–coated sutures on tendon repair in a rat model. J Shoulder Elbow Surg 2007; 16: S215–S221.
- 96Fuchs T, Surke C, Stange R, Quandte S, Wildemann B, Raschke M, Schmidmaier G. Local delivery of growth factors using coated suture material. Scientific World J 2012; 2012. Article ID 109216
- 97Rickert M, Jung M, Adiyaman M, Richter W, Simank HG. A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors 2001; 19: 115–126.
- 98Rijcken E, Fuchs T, Sachs L, Kersting C, Bruewer M, Krieglstein C. Insulin-like growth factor 1-coated sutures improve anastomotic healing in an experimental model of colitis. Br J Surg 2010; 97: 258–265.
- 99Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet-derived growth factor BB–coated sutures on rotator cuff healing in a sheep model. Arthroscopy 2010; 26: 1456–1462.
- 100Blaker J, Nazhat S, Boccaccini A. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 2004; 25: 1319–1329.
- 101Ming X, Nichols M, Rothenburger S. In vivo antibacterial efficacy of MONOCRYL plus antibacterial suture (Poliglecaprone 25 with triclosan). Surg Infect 2007; 8: 209–214.
- 102Ming X, Rothenburger S, Nichols MM. In vivo and in vitro antibacterial efficacy of PDS plus (polidioxanone with triclosan) suture. Surg Infect 2008; 9: 451–457.
- 103Rothenburger S, Spangler D, Bhende S, Burkley D. In vitro antimicrobial evaluation of Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 with triclosan) using zone of inhibition assays. Surg Infect 2002; 3: s79–s87.
- 104Shibuya TY, Kim S, Nguyen K, Do J, McLaren CE, Li K-T, Chen W-P, Parikh P, Wadhwa A, Zi X. Bioactive suture a novel immunotherapy for head and neck cancer. Clin Cancer Res 2004; 10: 7088–7099.
- 105Shukla A, Fuller RC, Hammond PT. Design of multi-drug release coatings targeting infection and inflammation. J Control Release 2011; 155: 159–166.
- 106Chen DW, Hsu Y-H, Liao J-Y, Liu S-J, Chen J-K, Ueng SW-N. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int J Pharm 2012; 430: 335–341.
- 107Colombo G, Padera R, Langer R, Kohane DS. Prolonged duration local anesthesia with lipid–protein–sugar particles containing bupivacaine and dexamethasone. J Biomed Mater Res A 2005; 75: 458–464.
- 108Torres-López JE, Carmona-Díaz E, Cortés-Peñaloza JL, Guzmán-Priego CG, Rocha-González HI. Antinociceptive synergy between diclofenac and morphine after local injection into the inflamed site. Pharmacol Rep 2013; 65: 358–367.
- 109Bastami S, Frödin T, Ahlner J, Uppugunduri S. Topical morphine gel in the treatment of painful leg ulcers, a double-blind, placebo-controlled clinical trial: A pilot study. Int Wound J 2012; 9: 419–427.
- 110Lin Q, Wesson RN, Maeda H, Wang Y, Cui Z, Liu JO, Cameron AM, Gao B, Montgomery RA, Williams GM, and others. Pharmacological mobilization of endogenous stem cells significantly promotes skin regeneration after full-thickness excision: The synergistic activity of AMD3100 and tacrolimus. J Invest Dermatol 2014; 134: 245–868.
- 111Stopek JB, Cohen MD, Hadba AR, Hodgkinson G. Bioactive substance in a barbed suture. US Patent No. 8348973 B2, 2013.
- 112Karjalainen T, Göransson H, Viinikainen A, Jämsä T, Ryhänen J. Nickel–titanium wire as a flexor tendon suture material: An ex vivo study. J Hand Surg (European Volume) 2010; 35: 469–474.
- 113Strauß S, Neumeister A, Barcikowski S, Kracht D, Kuhbier JW, Radtke C, Reimers K, Vogt PM. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings. PloS One 2013; 8: e53309
- 114Lambertz A, Vogels R, Busch D, Schuster P, Jockenhövel S, Neumann U, Klinge U, Klink C. Laparotomy closure using an elastic suture: A promising approach. J Biomed Mater Res B Appl Biomater 2015; 103: 417–423.
- 115Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH. Sensors and imaging for wound healing: A review. Biosens Bioelectron 2013; 41: 30–42.
- 116Tao H, Hwang S-W, Marelli B, An B, Moreau JE, Yang M, Brenckle MA, Kim S, Kaplan DL, Rogers JA. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc Natl Acad Sci USA 2014; 111: 17385–17389.
- 117Horeman T, Meijer EJ, Harlaar JJ, Lange JF, van den Dobbelsteen JJ, Dankelman J. Force sensing in surgical sutures. PLoS One 2013; 8: e84466
- 118Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004; 350: 1422–1429.
- 119Costerton JW, Stewart PS, Greenberg E. Bacterial biofilms: A common cause of persistent infections. Science 1999; 284: 1318–1322.
- 120Cheadle WG. Risk factors for surgical site infection. Surg Infect 2006 7: s7–s11.
- 121Katz S, Izhar M, Mirelman D. Bacterial adherence to surgical sutures. A possible factor in suture induced infection. Ann Surg 1981; 194: 35–41.
- 122Owens C, Stoessel K. Surgical site infections: Epidemiology, microbiology and prevention. J Hosp Infect 2008; 70: 3–10.
- 123Edmiston CE, Daoud FC, Leaper D. Is there an evidence-based argument for embracing an antimicrobial (triclosan)-coated suture technology to reduce the risk for surgical-site infections?: A meta-analysis. Surgery 2013; 154: 89–100.
- 124Barbolt TA. Chemistry and safety of triclosan, and its use as an antimicrobial coating on Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 suture with triclosan). Surg Infect 2002; 3: s45–s53.
- 125Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Committee HICPA. Guideline for prevention of surgical site infection, 1999. Am J Infect Control 1999; 27: 97–134.
- 126Turina M, Cheadle WG. Management of established surgical site infections. Surg Infect 2006; 7: s-33–s-41.
10.1089/sur.2006.7.s3-33 Google Scholar
- 127Henry-Stanley MJ, Hess DJ, Barnes AM, Dunny GM, Wells CL. Bacterial contamination of surgical suture resembles a biofilm. Surg Infect 2010; 11: 433–439.
- 128Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi K, Ehrlich H, Tsurkan M, Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog Polym Sci 2014; 39: 1644–1667.
- 129Shao K, Han B, Gao J, Jiang Z, Liu W, Liang Y. Fabrication and feasibility study of an absorbable diacetyl chitin surgical suture for wound healing. J Biomed Mater Res B Appl Biomater 2016; 104: 116–125.
- 130Serrano C, García-Fernández L, Fernández-Blázquez JP, Barbeck M, Ghanaati S, Unger R, Kirkpatrick J, Arzt E, Funk L, Turón P. Nanostructured medical sutures with antibacterial properties. Biomaterials 2015; 52: 291–300.
- 131Li Y, Kumar KN, Dabkowski JM, Corrigan M, Scott RW, Nüsslein K, Tew GN. New bactericidal surgical suture coating. Langmuir 2012; 28: 12134–12139.
- 132Obermeier A, Schneider J, Wehner S, Matl FD, Schieker M, von Eisenhart-Rothe R, Stemberger A, Burgkart R. Novel high efficient coatings for anti-microbial surgical sutures using chlorhexidine in fatty acid slow-release carrier systems. PLoS One 2014; 9: e101426
- 133Obermeier A, Schneider J, Föhr P, Wehner S, Kühn K-D, Stemberger A, Schieker M, Burgkart R. In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC Microbiol 2015; 15: 186.
- 134Lee HS, Lee SY, Park SH, Lee JH, Ahn SK, Choi YM, Choi DJ, Chang JH. Antimicrobial medical sutures with caffeic acid phenethyl ester and their in vitro/in vivo biological assessment. MedChemComm 2013; 4: 777–782.
- 135Meghil MM, Rueggeberg F, El-Awady A, Miles B, Tay F, Pashley D, Cutler CW. Novel coating of surgical suture confers antimicrobial activity against Porphyromonas gingivalis and Enterococcus faecalis. J Periodontol 2015; 86: 788–794.
- 136Dubas ST, Wacharanad S, Potiyaraj P. Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids Surf A Physicochem Eng Aspects 2011; 380: 25–28.
- 137Ho CH, Odermatt EK, Berndt I, Tiller JC. Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine. J Biomater Sci Polym Ed 2013; 24: 1589–1600.
- 138De Simone S, Gallo A, Paladini F, Sannino A, Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med 2014; 25: 2205–2214.
- 139Zhang S, Liu X, Wang H, Peng J, Wong KK. Silver nanoparticle-coated suture effectively reduces inflammation and improves mechanical strength at intestinal anastomosis in mice. J Pediatr Surg 2014; 49: 606–613.
- 140Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. Antibacterial surgical silk sutures using a high-performance slow-release carrier coating system. ACS Appl Mater Interfaces 2015; 7: 22394–22403.
- 141Weldon CB, Tsui JH, Shankarappa SA, Nguyen VT, Ma M, Anderson DG, Kohane DS. Electrospun drug-eluting sutures for local anesthesia. J Control Release 2012; 161: 903–909.
- 142Viju S, Thilagavathi G. Characterization of tetracycline hydrochloride drug incorporated silk sutures. J Textile Inst 2013; 104: 289–294.
- 143Chen X, Hou D, Tang X, Wang L. Quantitative physical and handling characteristics of novel antibacterial braided silk suture materials. J Mech Behav Biomed Mater 2015; 50: 160–170.
- 144García-Vargas M, González-Chomón C, Magariños B, Concheiro A, Alvarez-Lorenzo C, Bucio E. Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. Int J Pharm 2014; 461: 286–295.
- 145Morizumi S, Suematsu Y, Gon S, Shimizu T. Inhibition of neointimal hyperplasia with a novel tacrolimus-eluting suture. J Am Coll Cardiol 2011; 58: 441–442.
- 146Lee JE, Park S, Park M, Kim MH, Park CG, Lee SH, Choi SY, Kim BH, Park HJ, Park J-H. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief. Acta Biomater 2013; 9: 8318–8327.
- 147Lee D-H, Kwon T-Y, Kim K-H, Kwon S-T, Cho D-H, Jang SH, Son JS, Lee K-B. Anti-inflammatory drug releasing absorbable surgical sutures using poly (lactic-co-glycolic acid) particle carriers. Polym Bull 2014; 71: 1933–1946.
- 148Catanzano O, Acierno S, Russo P, Cervasio M, De Caro MDB, Bolognese A, Sammartino G, Califano L, Marenzi G, Calignano A. Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs. Mater Sci Eng C 2014; 43: 300–309.
- 149Guyette JP, Fakharzadeh M, Burford EJ, Tao ZW, Pins GD, Rolle MW, Gaudette GR. A novel suture-based method for efficient transplantation of stem cells. J Biomed Mater Res A 2013; 101: 809–818.
- 150Tao ZW, Favreau JT, Guyette JP, Hansen KJ, Lessard J, Burford E, Pins GD, Gaudette GR. Delivering stem cells to the healthy heart on biological sutures: Effects on regional mechanical function. J Tissue Eng Regen Med 2014. doi:10.1002/term.1904
- 151Yao J, Korotkova T, Riboh J, Chong A, Chang J, Smith RL. Bioactive sutures for tendon repair: Assessment of a method of delivering pluripotential embryonic cells. J Hand Surg 2008; 33: 1558–1564.
- 152Yao J, Korotkova T, Smith RL. Viability and proliferation of pluripotential cells delivered to tendon repair sites using bioactive sutures—An in vitro study. J Hand Surg 2011; 36: 252–258.
- 153Yao J, Woon CY-L, Behn A, Korotkova T, Park D-Y, Gajendran V, Smith RL. The effect of suture coated with mesenchymal stem cells and bioactive substrate on tendon repair strength in a rat model. J Hand Surg 2012; 37: 1639–1645.
- 154Georgiev-Hristov T, Garcia-Arranz M, Garcia-Gomez I, Garcia-Cabezas MA, Trebol J, Vega-Clemente L, Diaz-Agero P, Garcia-Olmo D. Sutures enriched with adipose-derived stem cells decrease the local acute inflammation after tracheal anastomosis in a murine model. Eur J Cardiothorac Surg 2012; 42: e407.
- 155Reckhenrich AK, Kirsch BM, Wahl EA, Schenck TL, Rezaeian F, Harder Y, Foehr P, Machens H-G, Egaña JT. Surgical sutures filled with adipose-derived stem cells promote wound healing. PloS One 2014; 9: e91169.
- 156Casado JG, Blazquez R, Jorge I, Alvarez V, Gomez -Mauricio G, Ortega -, Muñoz M, Vazquez J Sanchez -Margallo FM. Mesenchymal stem cell-coated sutures enhance collagen depositions in sutured tissues. Wound Repair Regen 2014; 22: 256–264.
- 157Schweizer HP. Triclosan: A widely used biocide and its link to antibiotics. FEMS Microbiol Lett 2001; 202: 1–7.
- 158Storch ML, Rothenburger SJ, Jacinto G. Experimental efficacy study of coated VICRYL plus antibacterial suture in guinea pigs challenged with Staphylococcus aureus. Surg Infect 2004; 5: 281–288.
- 159Gomez-Alonso A, Garcia-Criado F, Parreno-Manchado F, Garcia-Sanchez J, Garcia-Sanchez E, Parreno-Manchado A, Zambrano-Cuadrado Y. Study of the efficacy of Coated VICRYL Plus® Antibacterial suture (coated Polyglactin 910 suture with Triclosan) in two animal models of general surgery. J Infect 2007; 54: 82–88.
- 160Isik I, Selimen D, Senay S, Alhan C. Efficiency of antibacterial suture material in cardiac surgery: A double-blind randomized prospective study. Heart Surg Forum 2012; 15: E40–E45.
- 161Nakamura T, Kashimura N, Noji T, Suzuki O, Ambo Y, Nakamura F, Kishida A. Triclosan-coated sutures reduce the incidence of wound infections and the costs after colorectal surgery: A randomized controlled trial. Surgery 2013; 153: 576–583.
- 162Laas E, Poilroux C, Bézu C, Coutant C, Uzan S, Rouzier R, Chéreau E. Antibacterial-coated suture in reducing surgical site infection in breast surgery: A prospective study. Int J Breast Cancer 2012 (2012), Article ID 819578
- 163Wang Z, Jiang C, Cao Y, Ding Y. Systematic review and meta-analysis of triclosan-coated sutures for the prevention of surgical-site infection. Br J Surg 2013; 100: 465–473.
- 164Clinical Trial data: Effects of triclosan—Coated suture in cardiac surgery (Registration number: NCT01212315). Available at: https://clinicaltrials.gov/ct2/show/NCT01212315?term=NCT01212315&rank=1. (accessed November 25, 2014).
- 165Thimour-Bergström L, Roman-Emanuel C, Scherstén H, Friberg Ö, Gudbjartsson T, Jeppsson A. Triclosan-coated sutures reduce surgical site infection after open vein harvesting in coronary artery bypass grafting patients: A randomized controlled trial. Eur J Cardio Thoracic Surg 2013; 44: 931–938.
- 166Masini BD, Stinner DJ, Waterman SM, Wenke JC. Bacterial adherence to suture materials. J Surg Educ 2011; 68: 101–104.
- 167Fowler JR, Perkins TA, Buttaro BA, Truant AL. Bacteria adhere less to barbed monofilament than braided sutures in a contaminated wound model. Clin Orthop Relat Res 2013; 471: 665–671.
- 168Deliaert AE, Van den Kerckhove E, Tuinder S, Fieuws S, Sawor JH, Meesters-Caberg MA, van der Hulst RR. The effect of triclosan-coated sutures in wound healing. A double blind randomised prospective pilot study. J Plast Reconstr Aesthet Surg 2009; 62: 771–773.
- 169Chang WK, Srinivasa S, Morton R, Hill AG. Triclosan-impregnated sutures to decrease surgical site infections: Systematic review and meta-analysis of randomized trials. Ann Surg 2012; 255: 854–859.
- 170Melo MN, Ferre R, Castanho MA. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 2009; 7: 245–250.
- 171Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415: 389–395.
- 172Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J Antimicrob Chemother 2004; 54: 1019–1024.
- 173Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 2010; 28: 580–588.
- 174Silver S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 2003; 27: 341–353.
- 175Babkina O, Svetlichnyi V, Lapin I, Novikov V, Nemoikina A. Silver-nanoparticle based bactericidal coating for poly (glycolide-co-lactide) suture threads obtained by the method of laser ablation of bulk targets in alcohol solutions. Russian Phys J 2013; 56: 405–410.
- 176Barcikowski S, Hahn A, Kabashin A, Chichkov B. Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 2007; 87: 4755.
- 177Christopher D, Alee KS, Rao DN. Synthesis and characterization of silver nanoparticles produced by laser ablation technique in aqueous monomer solution. J Trends Chem 2011; 2: 15.
- 178 Antimicrobial surgical suture with silver. Biotextiles; 2015. Available at: https://biotextiles2015.wordpress.com/antimicrobial-surgical-suture-with-silver/ (press release). (accessed: July 23, 2015).
- 179White R, Cooper R. Silver sulphadiazine: A review of the evidence. Wounds UK 2005; 1: 51–61.
- 180Leaper D. Appropriate use of silver dressings in wounds: International consensus document. Int Wound J 2012; 9: 461–464.
- 181Roberts C, Ivins N, Widgerow A. ACTICOAT™ and ALLEVYN™ Ag Made Easy. Wounds Int 2011; 2. Available at: http://www.woundsinternational.com/media/issues/427/files/content_9880.pdf. (accessed: July 23, 2015).
- 182Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 2014; 100: 166–178.
- 183Eriksen THB, Skovsen E, Fojan P. Release of antimicrobial peptides from electrospun nanofibres as a drug delivery system. J Biomed Nanotechnol 2013; 9: 492–498.
- 184Zurita R, Puiggalí J, Rodríguez-Galán A. Loading and release of ibuprofen in multi-and monofilament surgical sutures. Macromol Biosci 2006; 6: 767–775.
- 185Wang L, Chen D, Sun J. Layer-by-layer deposition of polymeric microgel films on surgical sutures for loading and release of ibuprofen. Langmuir 2009; 25: 7990–7994.
- 186Gupta B, Jain R, Singh H. Preparation of antimicrobial sutures by preirradiation grafting onto polypropylene monofilament. Polym Adv Technol 2008; 19: 1698–1703.
- 187He CL, Huang ZM, Han XJ. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J Biomed Mater Res A 2009; 89: 80–95.
- 188Kashiwabuchi FK, Hanes J, Mao HQ, McDonnell PJ, Patel H, Rodrigues MW, Vidauri-Martinez J, Xu Q, Zhang S. Drug Loaded Microfiber Sutures for Ophthalmic Application. US Patent No. 0296933, 2013.
- 189Casalini T, Masi M, Perale G. Drug eluting sutures: A model for in vivo estimations. Int J Pharm 2012; 429: 148–157.
- 190Joseph J, Nair SV, Menon D. Integrating substrateless electrospinning with textile technology for creating biodegradable three-dimensional structures. Nano Lett 2015; 15: 5420–5426.
- 191Hu W, Huang Z-M, Liu X-Y. Development of braided drug-loaded nanofiber sutures. Nanotechnology 2010; 21: 315104
- 192Campbell AL, Patrick DA, Liabaud B, Geller JA. Superficial wound closure complications with barbed sutures following knee arthroplasty. J Arthroplasty 2014; 29: 966–969.
- 193Smith EL, DiSegna ST, Shukla PY, Matzkin EG. Barbed versus traditional sutures: Closure time, cost, and wound related outcomes in total joint arthroplasty. J Arthroplasty 2014; 29: 283–287.
- 194Chowdhry M, Singh S. Severe scar problems following use of a locking barbed skin closure system in the foot. Foot Ankle Surg 2013; 19: 131–134.
- 195Kwan KH, Yeung KW, Liu X, Wong KK, Shum HC, Lam YW, Cheng SH, Cheung KM, To MK. Silver nanoparticles alter proteoglycan expression in the promotion of tendon repair. Nanomedicine 2014; 10: 1375–1383.
- 196Correia SI, Pereira H, Silva-Correia J, Van Dijk C, Espregueira-Mendes J, Oliveira JM, Reis R. Current concepts: Tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface 2014; 11: 20130784
- 197Horváthy DB, Vácz G, Szabó T, Renner K, Vajda K, Sándor B, Lacza Z. Absorption and tensility of bioactive sutures prepared for cell transplantation. Materials 2013; 6: 544–550.
- 198Pascual I, de Miguel GF, Gómez -Pinedo U, de Miguel F, Arranz MG García -Olmo D. Adipose-derived mesenchymal stem cells in biosutures do not improve healing of experimental colonic anastomoses. Br J Surg 2008; 95: 1180–1184.
- 199Pascual I, De Miguel GF, Arranz MG, García-Olmo D. Biosutures improve healing of experimental weak colonic anastomoses. Int J Colorectal Dis 2010; 25: 1447–1451.
- 200Adams SB Jr, Thorpe MA, Parks BG, Aghazarian G, Allen E, Schon LC. Stem cell-bearing suture improves Achilles tendon healing in a rat model. Foot Ankle Int 2014; 35: 29–39.
- 201Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed 2002; 41: 2034–2057.
- 202Lendlein A, Langer R. Biodegradable shape memory polymeric sutures. Google Patents; US Patent No. 8303625 B2. 2012.
- 203Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002; 296: 1673–1676.
- 204Bao M, Lou X, Zhou Q, Dong W, Yuan H, Zhang Y. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces 2014; 6: 2611–2621.
- 205Filion TM, Xu J, Prasad ML, Song J. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites. Biomaterials 2011; 32: 985–991.
- 206Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications. Exp Rev Med Dev 2010; 7: 357–379.
- 207Fu YQ, Huang WM, Luo JK, Lu H. Polyurethane shape memory polymers for biomedical applications. In: LH Yahia, editor. Shape Memory Polymers for Biomedical Applications. Woodhead Publishing; 2015. p 167–195.
- 208Kim DH, Wang S, Keum H, Ghaffari R, Kim YS, Tao H, Panilaitis B, Li M, Kang Z, Omenetto F. Thin, flexible sensors and actuators as ‘instrumented'surgical sutures for targeted wound monitoring and therapy. Small 2012; 8: 3263–3268.