Addition of nanoscaledbioinspiredsurface features: A revolution for bone related implants and scaffolds?
Corresponding Author
Arie Bruinink
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Correspondence to: A. Bruinink; e-mail: [email protected]Search for more papers by this authorMalak Bitar
Technical Research and Development, Novartis Pharma AG, CH-4057 Basel, Switzerland
Search for more papers by this authorMiriam Pleskova
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorPeter Wick
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorHarald F. Krug
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorKatharina Maniura-Weber
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorCorresponding Author
Arie Bruinink
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Correspondence to: A. Bruinink; e-mail: [email protected]Search for more papers by this authorMalak Bitar
Technical Research and Development, Novartis Pharma AG, CH-4057 Basel, Switzerland
Search for more papers by this authorMiriam Pleskova
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorPeter Wick
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorHarald F. Krug
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorKatharina Maniura-Weber
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials – Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
Search for more papers by this authorAbstract
Our expanding ability to handle the “literally invisible” building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectorsin our society. During the last two decades, it has become increasingly evident that the “nano-sized” subunits composing many materials – living, natural and synthetic – are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospectsto achieve many therapeutic aims. In the past decadeitbecame clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices.
In this review, we briefly outline the state of the art and some of the current approaches andconcepts for the future utilisation of nanotechnology to create biomimeticimplantable medical devices and scaffolds for in vivo and in vitrotissue engineering,with a focus onbone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these newmaterial conceptsrepresent the bottleneck for new biomedical product development based on nanotechnologicalprinciples. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 275–294, 2014.
REFERENCES
- 1Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl 2009; 48: 872–897.
- 2 Visiongain. Nanomedicine 2006–2011. report. Volume 2009. http://www.visiongain.com/Report/198/Nanomedicine-2006–2011: Visiongain; 2006. Accessed on 7 May 2012.
- 3Wolbring G. Scoping document on Nanotechnology and disabled people for the Center for Nanotechnology in Society at Arizona State University. Volume 2009; 2009.
- 4Wagner V, Dullart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006; 24: 1211–1217.
- 5Webster TJ. Projections for nanomedicine into the next decade: But is it all about pharmaceuticals? Int J Nanomed 2008; 3: 1.
- 6Brune H, Ernst H, Grunwald A, Grünwald W, Hofmann H, Janich P, Krug HF, Mayor M, Schmid G, Simon U, Vogel, V. Nanotechnology—Assessment and Perspectives. Berlin: Springer; 2006.
- 7 ASTM E2456. E 2456-06 Terminology for Nanotechnology. West Conshohocken, PA 19428–2959, USA: ASTM international; 2006.
- 8Tjong SC. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 2007; 9: 639–652.
- 9Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials 1999; 20: 1221–1227.
- 10Bruinink A, Kaiser J-P, Meyer DC. Effect of biomaterial surface morphologies on bone marrow cell performance. Adv Eng Mater 2005; 7: 411–418.
- 11Born AK, Rottmar M, Lischer S, Pleskova M, Bruinink A, Maniura-Weber K. Correlating cell architecture with osteogenesis: Firsts steps towards live single cell monitoring. Eur Cell Mater 2009; 18: 49–62.
- 12Curtis A. Correlating cell architecture with osteogenesis:firsts steps towards live single cell monitoring. Expert Rev Med Devices 2005; 2: 293–301.
- 13Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmüller RK, Carpenter AE, Wessling M, Post GF, Uetz M, Reinders MJ, Stamatialis D, van Blitterswijk CA, de Boer J. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA 2011; 108: 16565–16570.
- 14Hamilton DW, Brunette DM. The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials 2007; 28: 1806–1819.
- 15Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E, Liotta LA. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J Cell Biol 1990; 110: 1427–1438.
- 16Lim JY, Donahue HJ. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Engin 2007; 13: 1879–1891.
- 17Tzaphlidou M. The role of collagen in bone structure: an image processing approach. Micron 2005; 36: 593–601.
- 18Vetter U, Eanes ED, Kopp JB, Termine JD, Robey GP. Changes in apatite crystal size in bones of patients with osteogenesis imperfecta. Calcif Tissue Int 1991; 49: 248–250.
- 19Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ. Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 2001; 19: 1027–1034.
- 20Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737–744.
- 21Ker ED, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH, Campbell PG. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 2011; 32: 8097–8107.
- 22Vasita R, Katti D. Nanofibers and their applications in tissue engineering. Int J Nanomed 2006; 1: 15–30.
- 23Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000; 51: 475–483.
- 24Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 2001; 7: 291–301.
- 25Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008; 29: 2941–2953.
- 26Ratner BD. The biocompatibility manifesto: biocompatibility for the twenty-first century. J Cardiovasc Trans Res 2011; 4: 523–527.
- 27Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosth Dent 2000; 84: 522–534.
- 28Shalabi MM, Gortemaker A, van't Hof MA, Jansen JA, Creugers NHJ. Implant surface roughness and bone healing: A systematic review. J Dent Res 2006; 85: 496–500.
- 29Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl 2009; 48: 5406–5415.
- 30Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF. Advancing dental implant surface technology—From micron—to nanotopography. Biomaterials 2008; 29: 3822–3835.
- 31McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby JM. Nanotopographical control of stem cell differentiation. J Tissue Eng 2010; 2010: 120623.
- 32Karagkiozaki VC, Logothetidis SD, Kassavetis SN, Giannoglou GD. Nanomedicine for the reduction of the thrombogenicity of stent coatings. Int J Nanomed 2010; 5: 239–248.
- 33Zhu B, Lu Q, Yin J, Hu J, Wang Z. Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. Tissue Eng 2005; 11: 825–834.
- 34Khang D L-SP, Pareta R, Lu J, Webster TJ. Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases. Acta Biomater 2009; 5: 1425–1432.
- 35Curtis A, Wilkinson C. Nanotechniques and approaches in biotechnology. Mater Today 2001; 4: 22–28.
- 36Curtis ASG, Dalby MJ, Gadegaard N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomed 2006; 1: 67–72.
- 37Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 2004; 25: 2695–2711.
- 38Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 2007; 28: 2821–2829.
- 39Smith LL, Niziolek PJ, Haberstroh KM, Nauman EA, Webster TJ. Decreased fi broblast and increased osteoblast adhesion on nanostructured NaOH-etched PLGA scaffolds. Int J Nanomed 2007; 2: 383–388.
- 40Biela SA, Su Y, Spatz JP, Kemkener R. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater 2009; 5: 2460–2466.
- 41Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 2007; 28: 2175–2182.
- 42Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD. Topographical control of cell behaviour: I. Simple step cues. Development 1987; 99: 439–448.
- 43Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996; 5: 451–457.
- 44Llopis-Hernández V, Rico P, Ballester-Beltrán J, Moratal D, Salmerón-Sánchez M. Role of surface chemistry in protein remodeling at the cell-material interface. Plos One 2011; 6:epub-e19610.
- 45Liu H, Niu A, Chen S-E, Li Y-P. β3-Integrin mediates satellite cell differentiation in regenerating mouse muscle. FASEB J 2011; 25: 1914–1921.
- 46Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, Chaudhri RA, Ornoy A, Boyan BD, Schwartz Z. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Nat Acad Sci USA 2008; 105: 15767–15772.
- 47Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoahinari M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mat 2009; 4: 045002.
- 48Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S. Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mat Res 2001; 59: 84–99.
- 49Michiardi A, Aparicio C, Buddy D. Ratner BD, Planell JA, Gil J. The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials 2007; 28: 586–594.
- 50Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007; 28: 3074–3082.
- 51Milleret V, Tugulu S, Schlottig F, Hall H. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation. Eur Cell Mater 2011; 21: 430–444.
- 52Pasche S, Vörös J, Griesser HJ, Spencer ND, Textor M. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. J Phys Chem B 2005; 109: 17545–17552.
- 53Yamazaki K, Ikeda T, Isono T, Ogino T. Selective adsorption of protein molecules on phase-separated sapphire surfaces. J Colloid Interface Sci 2011; 361: 64–70.
- 54Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochron DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004; 83: 529–533.
- 55Ostrovskaya L, Podestà A, Milani P, Ralchenko V. Influence of surface morphology on the wettability of cluster-assembled carbon films. Europhys Lett 2003; 63: 410–407.
- 56Kunzler TP, Huwiler C, Drobek T, Vörös J, Spencer ND. Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Biomaterials 2007; 28: 5000–5006.
- 57 10993-5/TC194 I, CEN/TC206. Biologische Beurteilung von Medizinprodukten- Teil 5: Prüfung auf in vitro-Zytotoxizität (ISO 10993-5:2009). In: Standardization ECf, editor. B-100 Brussel: CEN; 2009.
- 58Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005; 310: 1135–1138.
- 59Gadegaard N, Martines E, Riehle MO, Seunarine K, Wilkinson CDW. Applications of nano-patterning to tissue engineering. Microelectron Eng 2006; 83: 1577–1581.
- 60Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CD, Curtis AS. Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int J Biochem Cell Biol 2004; 36: 2005–2015.
- 61Selhuber-Unkel C, Erdmann T, López-García M, Kessler H, Schwarz US, Spatz JP. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. Biophys J 2010; 98: 543–551.
- 62Xiao J, Zhou H, Zhao L, Sun Y, Guan S, Liu B, Kong L. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep. Osteoporos Int 2011; 22: 1907–1913.
- 63Rani VVD, Vinoth-Kumar L, Anitha VC, Manzoor K, Deepthy M, Shantikumar VN. Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta Biomater 2012; 8: 1976–1989.
- 64Ballo A, Agheli H, Lausmaa J, Thomsen P, Petronis S. Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants. Int J Nanomed 2011; 6: 3415–3428.
- 65Tavares MG, de Oliveira PT, Nanci A, Hawthorne AC, Rosa AL, Xavier SP. Treatment of a commercial, machined surface titanium implant with H2SO4/ H2O2 enhances contact osteogenesis. Clin Oral Implants Res 2007; 18: 452–458.
- 66de Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci A. Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res A 2007; 80A: 554–564.
- 67Huang H-H, Pan S-J, Lai Y-L, Lee T-H, Chen C-C, Lu F-H. Osteoblast-like cell initial adhesion onto a network-structured titanium oxide layer. Scr Mater 2004; 51: 1017–1021.
- 68Mahlambi MM, Mishra AK, Mishra SB, Raichur AM, Mamba BB, Krause RW. Layer-by-Layer self-assembled metal-Ion- (Ag-, Co-, Ni-, and Pd-) doped TiO2 nanoparticles: synthesis, characterisation, and visible light degradation of rhodamine B. J Nanomater 2012;ID 302046.
- 69Huh P, Kim S-C. Nanostructured ZnO arrays with self-ZnO layer created using simple electrostatic layer-by-layer assembly. J Nanomater 2012;ID 131672.
- 70Sher P, Custódio CA, Mano J. Layer-by-layer technique for producing porous nanostructured 3D constructs using moldable freeform assembly of spherical templates. Small 2010; 6: 2644–2648.
- 71Zink C, Hall H, Brunette DM, Spencer ND. Orthogonal nanometer-micrometer roughness gradients probe morphological influences on cell behaviour. Biomaterials 2012; 33: 8055–8061.
- 72Hu Y, Cai K, Luo Z, Zhang Y, Li L, Lai M, Hou Y, Huang Y, Li J, Ding X and others. Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces. Biomaterials 2012; 33: 3515–3528.
- 73Kommireddy DS, Sriram SM, Lvov YM, Mills DK. Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials 2006; 27: 4296–4303.
- 74Bitar M, Friederici V, Imgrund P, Brose C, Bruinink A. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features. Eur Cell Mater 2012; 23: 333–347.
- 75Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Nat Acad Sci USA 2009; 106: 2130–2135.
- 76Sjöström T, Dalby MJ, Hart A, Tare R, Oreffo ROC, Su B. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomat 2009; 5: 1433–1441.
- 77Lohmüller T, Aydin D, Schwieder M, Morhard C, Louban I, Pacholski C, Spatz JP. Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 2011; 6: MR1–12.
- 78Spatz JP. Nano- and micropatterning by organic–inorganic templating of hierarchical self-assembled structures. Angew Chem Int Ed Engl 2002; 41: 3359–3362.
10.1002/1521-3773(20020916)41:18<3359::AID-ANIE3359>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 79Lim JY, Dreiss AD, Zhou Z, Hansen JC, Siedlecki CA, Hengstebeck RW, Cheng J, Winograd N, Donahue HJ. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 2007; 28: 1787–1797.
- 80Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002; 276: 1–9.
- 81Berry CC, Dalby MJ, McCloy D, Affrossman S. The fibroblast response to tubes exhibiting internal nanotopography. Biomaterials 2005; 26: 4985–4992.
- 82Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W, Kantlehner M, Kessler H, Spatz JP. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 2004; 5: 383–388.
- 83Rice JM, Hunt JA, Gallagher JA, Hanarp P, Sutherland DS, Gold J. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials 2003; 24: 4799–4818.
- 84Lee JW, Lee KB, Jeon HS, Park HK. Effects of surface nano-topography on human osteoblast filopodia. Anal Sci 2011; 27: 369–374.
- 85Dalby MJ, Gadegaard N, Wilkinson CD. The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J Biomed Mater Res A 2008; 84: 973–979.
- 86Wood MA. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J R Soc Interface 2007; 4: 1–17.
- 87Saavedra HM, Mullen TJ, Zhang P, Dewey DC, Claridge SA, Weiss PS. Hybrid strategies in nanolithography. Rep Prog Phys 2010; 73: 036501.
- 88Arnold M, Schwieder M, Blümmel J, Cavalcanti-Adam EA, López-Garcia M, Kessler H, Geiger B, Spatz JP. Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter 2009; 5: 72–77.
- 89Purwaningsih L, Schoen T, Wolfram T, Pacholski C, Spatz JP. Fabrication of multi-parametric platforms based on nanocone arrays for determination of cellular response. Beilstein J Nanotechnol 2011; 2: 545–551.
- 90Choi CH, Hagvall SH, Wu BM, Dunn JCY, Beygui RE, Kim CJ. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 2007; 28: 1672–1679.
- 91Chang CH, Tian L, Hesse WR, Gao H, Choi HJ, Kim JG, Siddiqui M, Barbastathis G. From two-dimensional colloidal self-assembly to three-dimensional nanolithography. Nano Lett 2011; 11: 2533–2537.
- 92Teixeira AI, McKie GA, Foley JD, Bertics PJ, Nealey PF, Murphy CJ. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 2006; 27: 3945–3954.
- 93Curtis AS, Gadegaard N, Dalby MJ, Riehle MO, Wilkinson CD, Aitchison G. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobiosci 2004; 3: 61–65.
- 94Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson C, D., Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007; 6: 997–1003.
- 95Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000; 21: 1803–1810.
- 96Zile MA, Puckett S, Webster TJ. Nanostructured titanium promotes keratinocyte density. J Biomed Mater Res A 2011; 97A: 59–65.
- 97Cousins BG, Doherty PJ, Williams RL, Fink J, Garvey MJ. The effect of silica nanoparticulate coatings on cellular response. J Mater Sci Mater Med 2004; 15: 355–359.
- 98Wenk H-R, Heidelbach F. Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone 1999; 24: 361–369.
- 99Chow LC, Sun L. Properties of nanostrucutred hydroxyapatite prepared by a spray drying technique. J Res Natl Inst Stand Technol 2004; 109: 543–551.
- 100Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001; 10 Suppl 2: S96–S101.
- 101Kokubo T. Bioceramics and their Clinical Applications. Woodhead Publishing Ltd, Cambridge, UK; 2008. 784 p.
- 102Shi X, Wang Y, Ren L, Gong Y, Wang DA. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm Res 2009; 26: 422–430.
- 103Tonino AJ, van der Wal BCH, Heyligers IC, Grimm B. Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses. Clin Orthop Relat Res 2009; 467: 478–484.
- 104Lu YP, Li MS, Li ST, Wang ZG, Zhu RF. Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 2004; 25: 4393–4403.
- 105Sun L, Berndt CC, Khor KA, Cheang HN, Gross KA. Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J Biomed Mater Res 2002; 62: 228–236.
- 106Wang J, Layrolle P, Stigter M, de Groot K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 2004; 25: 583–592.
- 107Lindgren M, Astrand M, Wiklund U, Engqvist H. Investigation of boundary conditions for biomimetic HA deposition on titanium oxide surfaces. J Mater Sci Mater Med 2009; 20: 1401–1408.
- 108Massaro C, Baker MA, Cosentino F, Ramires PA, Klose S, Milella E. Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques. J Biomed Mater Res 2001; 58: 651–657.
- 109Verket A, Tiainen H, Haugen HJ, Lyngstadaas SP, Nilsen O, Reseland JE. Enhanced osteoblast differentiation on scaffolds coated with TiO2 compared to SiO2 and CaP coatings. Biointerphases 2012; 7: 36.
- 110Wang J, de Boer J, de Groot K. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings. J Biomed Mater Res A 2008; 90: 664–670.
- 111Chen F, Lam WM, Lin CJ, Qiu GX, Wu ZH, Luk KD, Lu WW. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mat Res B Appl Biomat 2007; 82: 183–191.
- 112Epinette JA, Manley MT. Fifteen Years of Clinical Expierience with Hydroxyapatite Coatings in Joint Arthroplasty. Paris: Springer Verlag France; 2004.
10.1007/978-2-8178-0851-2 Google Scholar
- 113Alghamdi HS, A J A van Oirschot B, Bosco R, van den Beucken JJ, Aldosari AA, Anil S, Jansen JA. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Impl Res. 2012. doi: 10.1111/j.1600-0501.2011.02409.x. [Epub ahead of print].
- 114Lu Y, Markel MD, Nemke B, Lee JS, Graf BK, Murphy WL. Influence of hydroxyapatite-coated and growth factor-releasing interference screws on tendon-bone healing in an ovine model. Arthroscopy 2009; 25: 1427–1434.
- 115Cai Y, Zhang S, Zeng X, Sun D. Effect of fluorine incorporation on long-term stability of magnesium-containing hydroxyapatite coatings. J Mat Sci Mat Med 2011; 22: 1633–1638.
- 116Dimitrievska S, Bureau MN, Antoniou J, Mwale F, Petit A, Lima RS, Marple BR. Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J Biomed Mater Res A 2011; 98: 576–588.
- 117Lee TM, Yang CY, Chang E, Tsai RS. Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study. J Biomed Mater Res A 2004; 71: 652–660.
- 118Aniket, Young A, Marriott I, El-Ghannam A. Promotion of pro-osteogenic responses by a bioactive ceramic coating. J Biomed Mater Res A 2012; 100: 3314–3325.
- 119Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C. Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 2008; 19: 3603–3609.
- 120Oosterbos KJM, Vogely CH, Dhert WJA, Tonino AJ. Hydroxyapatite-coated Ti6Al4V implants and peri-implant infection. In: JA Epinette, MT Manley, editors. Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty. Paris: Springer Verlag France; 2004. p 177–189.
10.1007/978-2-8178-0851-2_18 Google Scholar
- 121Nelson M, Balasundaram G, Webster TJ. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int J Nanomed 2006; 1: 339–349.
- 122Autefage H, Briand-Mésange F, Cazalbou S, Drouet C, Fourmy D, Gonçalvès S, Salles JP, Combes C, Swider P, Rey C. Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics. J Biomed Mater Res B Appl Biomater 2009; 91: 706–715.
- 123dos Santos EA, Farina M, Soares GA, Anselme K. Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J Mater Sci Mater Med 2008; 19: 2307–2316.
- 124Zhou H, Wu T, Dong X, Wamng Q, Shen J. Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochem Biophys Res Commun 2007; 361: 91–96.
- 125Foppiano S, Marshall SJ, Marshall GW, Saiz E, Tomsia AP. Bioactive glass coatings affect the behavior of osteoblast-like cells. Acta Biomater 2008; 3: 765–771.
- 126Wheeler DL, Montfort MJ, McLoughlin SW. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res 2000; 55: 603–612.
- 127Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: A review of in vitro and in vivo evidences. Tissue Eng B 2010; 16: 199–207.
- 128Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20: 2287–2303.
- 129Tan F, Naciri M, Al-Rubeai M. Osteoconductivity and growth factor production by MG63 osteoblastic cells on bioglass-coated orthopedic implants. Biotechol Bioeng 2011; 108: 454–464.
- 130Lopez-Sastre A, Gonzalo-Orden JM, Altónaga JAR, Altónaga JR, Orden MA. Coating titanium implants with bioglass and with hydroxyapatite. Int Orthop 1998; 22: 380–383.
- 131Xie XH, Yu XW, Zeng SX, Du RL, Hu YH, Z. Y, Lu EY, Dai KR, Tang TT. Enhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite. J Mater Sci Mater Med 2010; 21: 2165–2173.
- 132Bruinink A, Luginbuehl R. Evaluation of biocompatibility using in vitro methods: Interpretation and limitations. Adv Biochem Engin/Biotechnol 2012; 126: 117–152.
- 133Chai F, Mathis N, Blanchemain N, Meunier C, Hildebrand HF. Osteoblast interaction with DLC-coated Si substrates. Acta Biomater 2008; 4: 1369–1381.
- 134Schroeder A, Francz G, Bruinink A, Hauert R, Mayer J, Wintermantel E. Titanium containing amorphous hydrogenated carbon coatings (a-C:H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cells in vitro. Biomaterials 2000; 21: 449–456.
- 135Sabata M, Francesco DA, Ilaria A, Roberto T, Manuela P, Mariaserena D, Samantha M, Auro C, Giorgio CG, Maria KJ and others. Hydrogenated amourphous carbon nanopatterned film designs drive human bone marrow mesenchymal stem cell cytoskeleton architecture. Tissue Eng Part A 2009; 15: 3139–3149.
- 136Yang L, Sheldon BW, Webster TJ. The impact of diamond nanocrystallinity on osteoblast functions. Biomaterials 2009; 30: 3458–3465.
- 137Randeniya LK, Bendavid A, Martin PJ, Amin MS, Preston EW, Magdon Ismail FS, Coe S. Incorporation of Si and SiOx into diamond-like carbon films: Impact on surface properties and osteoblast adhesion. Acta Biomater 2009; 5: 1791–1797.
- 138Nöthe M, Buuron A, Koch HJ, Penkalla WP, Rehbach WP, Bolt H. Characterization of a-C:H films with metal interlayers and mixed interfaces. Surf Coatings Technol 1999; 116–119: 335–341.
- 139Lee SH, Kim JG, VChoi HW, Lee KR. Microtensile strain on the corosion performance of diamond-like carbon coating. J Biomed Mater Res 2007; 85A: 808–814.
- 140Falub CV, Thorwarth G, Affolter C, Müller U, Voisard C, Hauert R. A quantitative in-vitro method to predict the adhesion lifetime of diamond-like-carbon (DLC) thin films on biomedical implants. Acta Biomater 2009; 5: 3086–3097.
- 141Iijima S. Helical microtubes of graphitic carbon. Nature 1991; 354: 56–58.
- 142Su DS. 20 years of carbon nanotubes. Chem Sus Chem 2011; 4: 811–813.
- 143Bajaj P, Khang D, Webster TJ. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane. Int J Nanomed 2006; 1: 361–365.
- 144Yuen FLY, Zak G, Waldman SD, Docoslis A. Morphology of fibroblasts grown on substrates formed by dielectrophoretically aligned carbon nanotubes. Cytotechnology 2008; 56: 9–17.
- 145Khang D, Sato M, Price RL, Ribbe AE, Webster TJ. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns. Int J Nanomed 2006; 1: 65–72.
- 146MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 2005; 74: 489–496.
- 147Usui Y, Aoki K, Narita N, Murakami N, Nakamura I, Nakamura K, Ishigaki N, Yamazaki H, Horiuchi H, Kato H and others. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 2008; 4: 240–246.
- 148Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, M. T, M. G. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 2004; 11: 2233–2236.
- 149Balani K, Anderson R, Laha T, Andara M, Tercero J, Crumpler E, Agarwal A. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 2007; 28: 618–624.
- 150Zhao B, Hu H, Swadhin K, Mandal K, Haddon RC. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater 2005; 17: 3235–3241.
- 151Bhattacharya M, Wutticharoenmongkol-Thitiwongsawet P, Hamamoto DT, Lee D, Cui T, Prasad HS, Ahmad M. Bone formation on carbon nanotubes composite. J Biomed Mater Res A 2011; 96: 75–82.
- 152Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B 2005; 109: 4285–4289.
- 153Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004; 4: 507–511.
- 154Ni Y, Hu H, Malarkey EB, Zhao B, Montana V, Haddon RC, Parpura V. Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth. J Nanosci Nanotechnol 2005; 5: 1707–1712.
- 155Lu Y, Li T, Zhao X, Li M, Cao Y, Yang H, Duan YY. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials 2010; 31: 5169–5181.
- 156Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 2008; 3: 434–439.
- 157Lin C, Han H, Zhang F, Li A. Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications. J Mater Sci Mater Med 2008; 19: 2569–2574.
- 158Vandrovcová M, Bačáková L. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol Res 2011; 60: 403–417.
- 159Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 2008; 29: 94–102.
- 160Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007; 2: 469–478.
- 161Wick P, Clift MJD, Rösslein M, Rothen-Ruthishauser B. A brief summary of carbon nanotubes science and technology: a health and safety perspective. ChemSusChem 2011; 18: 905–911.
- 162Hirsch C, Roesslein M, Krug HF, Wick P. Nanomaterial cell interactions: Are current in vitro tests reliable? Nanomed 2011; 6: 837–847.
- 163Kaiser JP, Rösslein M, Bürki-Thurnherr T, Wick P. Carbon nanotubes—Curse or blessing. Curr Med Chem 2011; 18: 2115–2128.
- 164Krug HF, Wick P. Nanotoxicology: An interdisciplinary challenge. Angew Chem Int Ed Engl 2011.
- 165Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168: 121–131.
- 166Kaiser JP, Wick P, Manser P, Spohn P, Bruinink A. Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J Mater Sci Mater Med 2008; 19: 1523–1527.
- 167Bruinink A, Hasler S, Manser P. In vitro effects of SWCNT: Role of treatment duration. Phys Status Solidi B 2009; 246: 2423–2427.
- 168Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007; 168: 58–74.
- 169Helfenstein M, Miragoli M, Rohr S, Müller L, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B. Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicol 2008; 253: 70–78.
- 170Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, Kaiser JP, Krug HF, Rothen-Rutishauser B, Wick P. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 2011; 200: 176–186.
- 171Thurnherr T, Su DS, Diener L, Weinberg G, Manser P, Pfänder N, Arrigo R, Schuster ME, Wick P, Krug HF. Comprehensive evaluation of in vitro toxicity of three large-scale produced carbon nanotubes on human Jurkat T cells and a comparison to crocidolite asbestos. Nanotoxicol 2009; 3: 319–338.
- 172Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci 2002; 961: 83–95.
- 173Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 2007; 13: 1845–1866.
- 174Ashammakhi N, Ndreu A, Piras AM, Nikkola L, Sindelar T, Ylikauppila H, Harlin A, Gomes ME, Neves NM, Chiellini E and others. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol 2007; 7: 862–882.
- 175Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 2007; 46: 5670–5703.
- 176Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LY. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A 2006; 79: 456–463.
- 177Wray LS, Orwin EJ. Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Eng Part A 2009; 15: 1463–1472.
- 178Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, Chu B, Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007; 104: 11915–11920.
- 179Bashur CA, Shaffer RD, Dahlgren LA, Guelcher SA, Goldstein AS. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng Part A 2009: 2435–2445.
- 180Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 2008; 29: 2899–2906.
- 181Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 2007; 28: 3012–3025.
- 182Rim NG, Lee JH, Jung SI, Lee BK, Kim CH, Shin H. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers. Macromol Biosci 2009; 9: 795–804.
- 183Li WJ, Cooper JA, Jr., Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2006; 2: 377–385
- 184Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005; 26: 5158–5166.
- 185Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003; 24: 2077–2082.
- 186Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 2004; 10: 33–41.
- 187Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, Jazayery M. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 2009; 24: 278–287.
- 188Chan CK, Liao S, Li B, Lareu RR, Larrick JW, Ramakrishna S, Raghunath M. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers. Biomed Mater 2009; 4: 035006.
- 189Shin S-H, Purevdorj O, Castano O, Planell JA, Kim H-W. A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 2012; 3: 2041731412443530.
- 190Venugopal J, Prabhakaran MP, Low S, Choon AT, Zhang YZ, Deepika G, Ramakrishna S. Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des 2008; 14: 2184–2200.
- 191Kriegel C, Arrechi A, Kit K, McClements DJ, Weiss J. Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit Rev Food Sci Nutr 2008; 48: 775–797.
- 192Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 2008; 3: 034002.
- 193Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nano-structured scaffolds for bone tissue engineering. Acta Biomater 2009; 5: 2884–2893.
- 194Venugopal J, Ramakrishna S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol 2005; 125: 147–158.
- 195Wang HS, Fu GD, Li XS. Functional polymeric nanofibers from electrospinning. Recent Pat Nanotechnol 2009; 3: 21–31.
- 196Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 2004; 10: 1160–1168.
- 197Zhang YZ, Su B, Venugopal J, Ramakrishna S, Lim CT. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomed 2007; 2: 623–638.
- 198Venugopal J, Rajeswari R, Shayanti M, Low S, Bongso A, Dev VR, Deepika G, Choon AT, Ramakrishna S. Electrosprayed hydroxyapatite on polymer nanofibres to differentiate mesenchymal stem cells to osteogenesis. J Biomater Sci Polym Ed. 2012. [Epub ahead of print].
- 199Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 2007; 8: 631–637.
- 200Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK, Nyairo E. Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 2006; 6: 487–493.
- 201Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 2009; 45: 4–16.
- 202Liao S, Ngiam M, Chan CK, Ramakrishna S. Fabrication of nano-hydroxyapatite/collagen/osteonectin composites for bone graft applications. Biomed Mater 2009; 4: 25019.
- 203Ngiam M, Liao S, Patil AJ, Cheng Z, Yang F, Gubler MJ, Ramakrishna S, Chan CK. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Tissue Eng Part A 2009; 15: 535–546.
- 204Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008; 29: 4314–4322.
- 205Kim J, Lee J, Kwon S, Jeong S. Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J Nanosci Nanotechnol 2009; 9: 1098–1102.
- 206Xu X, Yang Q, Bai J, Lu T, Li Y, Jing X. Fabrication of biodegradable electrospun poly(L-lactide-co-glycolide) fibers with antimicrobial nanosilver particles. J Nanosci Nanotechnol 2008; 8: 5066–5070.
- 207Penchev H, Paneva D, Manolova N, Rashkov I. Electrospun hybrid nanofibers based on chitosan or N-carboxyethylchitosan and silver nanoparticles. Macromol Biosci 2009; 9: 884–894.
- 208Kang MS, Shin MK, Ismail YA, Shin SR, Kim SI, Kim H, Lee H, Kim SJ. The fabrication of polyaniline/single-walled carbon nanotube fibers containing a highly-oriented filler. Nanotechnology 2009; 20: 085701.
- 209Schofer M, Fuchs-Winkelmann S, Wack C, Rudisile M, Dersch R, Leifeld I, Wendorff J, Greiner A, Paletta JR, Boudriot U. Lack of obvious influence of PLLA nanofibers on the gene expression of BMP-2 and VEGF during growth and differentiation of human mesenchymal stem cells. Sci World J 2009; 9: 313–319.
- 210Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP. Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 2006; 43( Pt 1): 17–24.
- 211Chew SY, Wen J, Yim EK, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005; 6: 2017–2024.
- 212Schofer MD, Boudriot U, Bockelmann S, Walz A, Wendorff JH, Greiner A, Paletta JR, Fuchs-Winkelmann S. Effect of direct RGD incorporation in PLLA nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells. J Mater Sci Mater Med 2009; 20: 1535–1540.
- 213Ahmed I, Ponery AS, Nur EKA, Kamal J, Meshel AS, Sheetz MP, Schindler M, Meiners S. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces. Mol Cell Biochem 2007; 301: 241–249.
- 214Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 2008; 29: 3574–3582.
- 215Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 2003; 89: 341–353.
- 216Liang D, Luu YK, Kim K, Hsiao BS, Hadjiargyrou M, Chu B. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res 2005; 33: e170.
- 217Bellan LM, Cross JD, Strychalski EA, Moran-Mirabal J, Craighead HG. Individually resolved DNA molecules stretched and embedded in electrospun polymer nanofibers. Nano Lett 2006; 6: 2526–2530.
- 218Nie H, Wang CH. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 2007; 120: 111–121.
- 219Yixiang D, Yong T, Liao S, Chan CK, Ramakrishna S. Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering. Tissue Eng Part A 2008; 14: 1321–1329.
- 220Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng Part A 2008; 14: 2105–2119.
- 221Bandyopadhyay-Ghosh S. Bone as a collagen-hydroxyapatite composite and its repair. Trends Biomater Artif Organs 2008; 22: 116–124.
- 222Kim HW, Lee HH, Knowles JC. Electrospinning biomedical nanocomposite fibres of hydroyapatite/poly(lactic acid) for bone regeneration. J Biomed Mater Res A 2006; 79: 643–649.
- 223Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 2005; 26: 4139–4147.
- 224Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med. 2008;19: 2925–2932.
- 225Song J-H, Yoon B-H, Kim H-E, Kim H-W. Bioactive and degradable hybridized nanofibers of gelatin–siloxane for bone regeneration. J Biomed Mater Res A 2008; 84A: 875–884.
- 226Yu H-S, Jang J-H, Kim T-I, Lee H-H, Kim H-W. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J Biomed Mater Res A 2009; 88A: 747–754.
- 227Liao S, Murugan R, Chan CK, Ramakrishna S. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. J Mech Behav Biomed Mater 2008; 1: 252–260.
- 228Chen J, Chu B, Hsiao BS. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J Biomed Mater Res A 2006; 79A: 307–317.
- 229Cui W, Li X, Zhou S, Weng J. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers. J Biomed Mat Res Part A 2007; 82A: 831–841.
- 230Ngiam M, Liao S, Patil AJ, Cheng Z, Yang F, Gubler MJ, Ramakrishna S, Chan CK. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Tissue Eng Part A 2009; 15: 535–546.
- 231Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Delivery Rev 2009; 61: 1033–1042.
- 232Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 2006; 12: 221–233.
- 233Kwon IK, Matsuda T. Co-electrospun nanofiber fabrics of poly(L-lactide-co-epsilon-caprolactone) with type I collagen or heparin. Biomacromolecules 2005; 6: 2096–2105.
- 234Kim J-E, Noh K-T, Yu H-S, Lee H-Y, Jang J-H, Kim H-W. A fibronectin peptide-coupled biopolymer nanofibrous matrix to speed up initial cellular events. Adv Eng Mater B 2010; 12: 94–100.
- 235Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 2008; 3: 034002.
- 236Casper CL, Yamaguchi N, Kiick KL, Rabolt JF. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 2005; 6: 1998–2007.
- 237Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006; 27: 3115–3124.
- 238Wang C, Wang M. Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering. J Mater Sci Mater Med 2012; 23: 2381–2397.
- 239Zhang YZ, Feng Y, Huang Z-M, Ramakrishna S, Lim CT. Fabrication of porous electrospun nanofibres. Nanotechnology 2006; 17: 901–908.
- 240Walles T, Lichtenberg A, Puschmann C, Leyh R, Wilhelmi M, Kallenbach K, Haverich A, Mertsching H. In vivo model for cross-species porcine endogenous retrovirus transmission using tissue engineered pulmonary arteries. Eur J Cardiothorac Surg 2003; 24: 358–363.
- 241Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 2006; 27: 2265–2274.
- 242Lienemann PS, Lutolf MP, Ehrbar M. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Delivery Rev. 2012; 64: 1078–1089.
- 243Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hedrick JL, Liao Q, Frank CW, Kingsbury K, Hawker CJ. Synthesis of well-defined hydrogel networks using click chemistry. Chem Commun 2006: 2774–2776.
- 244Shen W, Zhang K, Kornfield JA, Tirrell DA. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 2006; 5: 153–158.
- 245Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 2003; 21: 513–518.
- 246Adelow C, Segura T, Hubbell JA, Frey P. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 2008; 29: 314–326.
- 247Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, Hubbell JA. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 2008; 29: 2757–2766.
- 248Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 2005; 4: 298–302.
- 249Peled E, Boss J, Bejar J, Zinman C, Seliktar D. A novel poly(ethylene glycol)-fibrinogen hydrogel for tibial segmental defect repair in a rat model. J Biomed Mater Res A 2007; 80: 874–884.
- 250Murakami Y, Maeda M. DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 2005; 6: 2927–2929.
- 251Ehrbar M, Rizzi SC, Hlushchuk R, Djonov V, Zisch AH, Hubbell JA, Weber FE, Lutolf MP. Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials 2007; 28: 3856–3866.
- 252Schliephake H, Aref A, Scharnweber D, Bierbaum S, Sewing A. Effect of modifications of dual acid-etched implant surfaces on peri-implant bone formation. I. Organic coatings. Clin Oral Implants Res 2009; 20: 31–37.
- 253Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H. Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med 1997; 8: 867–872.
- 254Rezania A, Johnson R, Lefkow AR, Healy KE. Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir 1999; 15: 6931–6939.
- 255Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007; 318: 426–430.
- 256Kämmerer PW, Heller M, Brieger J, Klein MO, Al-Nawas B, Gabriel M. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur Cell Mater 2011; 21: 364–372.
- 257Cao X, Yu WQ, Qiu J, Zhao YF, Zhang YL, Zhang FQ. RGD peptide immobilized on TiO(2) nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression. J Mater Sci Mater Med 2012; 23: 527–536.
- 258Secchi AG, Grigoriou V, Shapiro IM, Cavalcanti-Adam EA, Composto RJ, Ducheyne P, Adams CS. RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis. J Biomed Mater Res A 2007; 83: 577–884.
- 259Poh CK, Shi Z, Lim TY, Neoh KG, Wang W. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials 2010; 31: 1578–1585.
- 260Shi Z, Neoh KG, Kang ET, Poh C, Wang W. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Eng Part A 2009; 15: 417–426.
- 261Park JW, Kurashima K, Tustusmi Y, C.H. A, Suh JY, Doi H, Nomura N, Noda K, Hanawa T. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone. Acta Biomater 2011; 7: 3222–3229.
- 262Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res 2006; 17: 251–257.
- 263Ceylan H, Kocabey S, Tekinay AB, Guler MO. Surface-adhesive and osteogenic self-assembled peptide nanofibers for bioinspired functionalization of titanium surfaces. Soft Matter 2012; 8: 3929–3937.
- 264Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004; 25: 4731–4739.
- 265Burguera EF, Bitar M, Bruinink A. Novel in vitro co-culture methodology to investigate heterotypic cell-cell interactions. Eur Cell Mater 2010; 19: 166–179.
- 266Lavenus S, Trichet V, Le Chevalier S, Hoornaert A, Louarn G, Layrolle P. Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine 2012; 7: 967–980.
- 267Wein F, Bruinink A. Human triple cell co-culture for evaluation of bone implant materials. Integr Biol (Camb). 2013. [Epub ahead of print].
- 268Zhang Y, Andrukhov O, Berner S, Matejka M, Wieland M, Rausch-Fan X, Schedle A. Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast-like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC). Dent Mater 2010; 26: 1043–1051.
- 269Moczulska M, Bitar M, Święszkowski W, Bruinink A. Biological characterization of woven fabric using 2- and 3-dimensional cell cultures. J Biomed Mater Res A 2012; 100: 882–893.
- 270Chen C, Loe F, Blocki A, Peng Y, Raghunath M. Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv Drug Deliv Rev 2011; 63: 277–290.
- 271Zeiger AS, Loe FC, Li R, Raghunath M, Van Vliet KJ. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior. Plos One 2012; 7: e37904.