A review of bioactive glasses: Their structure, properties, fabrication and apatite formation
Corresponding Author
Gurbinder Kaur
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Correspondence to: G. Kaur; e-mail: [email protected]Search for more papers by this authorO.P. Pandey
School of Physics and Materials Science, Thapar University, Patiala-147004, Punjab, India
Search for more papers by this authorK. Singh
School of Physics and Materials Science, Thapar University, Patiala-147004, Punjab, India
Search for more papers by this authorDan Homa
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Search for more papers by this authorBrian Scott
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Search for more papers by this authorGary Pickrell
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Search for more papers by this authorCorresponding Author
Gurbinder Kaur
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Correspondence to: G. Kaur; e-mail: [email protected]Search for more papers by this authorO.P. Pandey
School of Physics and Materials Science, Thapar University, Patiala-147004, Punjab, India
Search for more papers by this authorK. Singh
School of Physics and Materials Science, Thapar University, Patiala-147004, Punjab, India
Search for more papers by this authorDan Homa
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Search for more papers by this authorBrian Scott
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Search for more papers by this authorGary Pickrell
Department of Material Science and Engineering, Holden Hall, Virginia Tech, Blacksburg-24060, Virginia, USA
Search for more papers by this authorAbstract
Bioactive glass and glass–ceramics are used in bone repair applications and are being developed for tissue engineering applications. Bioactive glasses/Bioglass are very attractive materials for producing scaffolds devoted to bone regeneration due to their versatile properties, which can be properly designed depending on their composition. An important feature of bioactive glasses, which enables them to work for applications in bone tissue engineering, is their ability to enhance revascularization, osteoblast adhesion, enzyme activity and differentiation of mesenchymal stem cells as well as osteoprogenitor cells. An extensive amount of research work has been carried out to develop silicate, borate/borosilicate bioactive glasses and phosphate glasses. Along with this, some metallic glasses have also been investigated for biomedical and technological applications in tissue engineering. Many trace elements have also been incorporated in the glass network to obtain the desired properties, which have beneficial effects on bone remodeling and/or associated angiogenesis. The motivation of this review is to provide an overview of the general requirements, composition, structure-property relationship with hydroxyapatite formation and future perspectives of bioglasses.Attention has also been given to developments of metallic glasses and doped bioglasses along with the techniques used for their fabrication. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 254–274, 2014.
REFERENCES
- 1Ramakrishna S, Meyer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: A review. Comp Sci Tech 2001; 61: 1189–1224.
- 2Williams DF. Consensus and Definitions in Biomaterials, Advances in Biomaterials. Amsterdam: Elsevier Science; 1988. p 11–16.
- 3Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991; 74: 1487–1510.
- 4Speidel MO, Uggowitzer PJ. Biocompatible Nickel-Free Stainless Steels to Avoid Nickel Allergy, Material in Medicine. Seitzerlansd: vdf Hochschulverlag AG ander ETH zurich; 1998. p 191–208.
- 5Rehman MN, Ray DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater 2011; 7: 2355–2373.
- 6Zhang R, Ma PX. Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone tissue engineering I. Preparation and morphology. J Biomed Mater Res 1999; 44: 446–455.
10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 7Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res 2003; 64: 465–474.
- 8Kim S-S, Ahn KM, Park MS, Lee J-H, Choi CY, Kim B-S. A poly(lactide coglycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res 2007; 80: 206–215.
- 9Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20: 2287–2303.
- 10Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1972; 2: 117–141.
- 11Hench LL. Biomaterials: A forecast for the future. Biomaterials 1998; 19: 1419–1423.
- 12Hench LL, Wilson J. Introduction to Bioceramics. Singapore: World Scientific; 1993.
10.1142/2028 Google Scholar
- 13Hench LL. The story of BioglassVR. J Mater Sci Mater Med 2006; 17: 967–978.
- 14Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK. Recommendations for the characterization of porous solids. Pure Appl Chem 1994; 66: 1739–1758.
- 15Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 2009; 29: 1245–1255.
- 16Williams DF, J. Cunningham. Materials in Clinical Dentistry. Oxford, UK: Oxford University Press; 1979.
- 17Williams DF, editor. Definitions in Biomaterials. New York: Elsevier; 1987.
- 18Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27: 2907–2915.
- 19Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 1990; 24: 721–734.
- 20Ducheyne P. Bioceramics: Materials characteristics versus in vivo behavior. J Biomed Mater Res 1987; 21: 219–236.
- 21Bohner M, LemaŸtre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009; 30: 2175–2179.
- 22Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, et al. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 2004; 25: 1439–1451.
- 23Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 2005; 26: 4383–4394.
- 24LeGeros RZ, LeGeros JP. Phosphate minerals in human tissues. In: JO Nriagu, PB Moore, editors. Phosphate Minerals. Berlin: Springer-Verlag; 1984. p 351–385.
10.1007/978-3-642-61736-2_12 Google Scholar
- 25Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26: 3557–3563.
- 26Bandyopadhyay A, Bernard S, Xue W, Bose S. Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 2006; 89: 2675–2688.
- 27Ohura K, Bohner M, Hardouin P, LemaŸtre J, Pasquier G, Flautre B. Resorption of and bone formation from, new β-tricalcium phosphate–monocalcium phosphate cements: An in vivo study. J Biomed Mater Res 1996; 30: 1993–2000.
- 28Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003; 14: 195–200.
- 29Rahaman MN, Brown RF, Bal BS, Day DE. Bioactive glasses for non-bearing applications in total joint replacement. Semin Arthroplasty 2007; 17: 102–112.
10.1053/j.sart.2006.09.003 Google Scholar
- 30Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 2011; 7: 16–30.
- 31Chen Q, Zhu C, Thouas GA. Progr Biomater, doi: 10: 1186/2194-0517-2.
- 32Lobel KD, Hench LL. In-vitro protein interactions with a bioactive gel-glass. J Sol Gel Sci Technol 1996; 7: 69–76.
- 33Ohgushi H, Dohi Y, Yoshikawa T, Tamai S, Tabata S, Okunaga K, Shibuya T. Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. J Biomed Mater Res 1996; 32: 341–348.
10.1002/(SICI)1097-4636(199611)32:3<341::AID-JBM6>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 34Kotani S, Fujita Y, Kitsugi T, Nakamura T, Yamamuro T, Ohtsuki C, et al. Bone bonding mechanisms of β-tricalcium phosphate. J Biomed Mater Res 1991; 25: 1303–1315.
- 35Keshaw H, Forbes A, Day RM. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 2005; 26: 4171–4179.
- 36Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe S. Assessment of polyglycolic acid mesh and bioactive glass for soft tissue engineering scaffolds. Biomaterials 2004; 25: 5857–5866.
- 37Gatti AM, Valdre G, Andersson OH. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials 1994; 15: 208–212.
- 38Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R. Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 2002; 13: 1207–1214.
- 39Schepers E, de Clercq M, Ducheyne P, Kempeneers R., Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 1991; 18: 439–452.
- 40Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann NY Acad Sci 2002; 961: 83–95.
- 41Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini A. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R Rep 2008; 59: 1–37.
- 42Chen QZ, Rezwan K, Armitage D, Nazhat SN, Boccaccini AR. The surface functionalization of 45S5 Bioglass (R)-based glass-ceramic scaffolds and its impact on bioactivity. J Mater Sci Mater Med 2006; 17: 979–987.
- 43Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/BioglassW composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 2003; 63: 2417–2429.
- 44Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jéróme R. Preparation and characterisation of poly(lactide-co-grycolide) (PLGA) and PLGA/Bioglass W composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C 2005; 25: 23–31.
- 45Boccaccini AR, Notingher I, Maquet V, Jérôme R. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by BioglassW particles for tissue engineering applications. J Mater Sci Mater Med 2003; 14: 443–450.
- 46Filho OP, Latorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45 S5. J Biomed Mater Res 1996; 30: 509–514.
10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 47Li P, Yang Q, Zhang F, Kokubo T. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J Mater Sci Mater Med 1992; 3: 452–456.
- 48Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair. J Biomed Res A 2002; 49: 340–348.
- 49Chen QZ, Liang SL, Wang J, Simon GP. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. J Mech Behav Biomed Mater 2011; 4: 1805–1818.
- 50Chen QZ, Boccaccini AR. Coupling mechanical competence and bioresorbability in BioglassW-derived tissue engineering scaffolds. Adv Eng Mater 2006; 8: 285–289.
- 51Lefebvre L, Gremillard L, Chevalier J, Zenati R, Bernache-Assolat D. Sintering behaviour of 45S5 bioactive glass. Acta Biomater 2008; 4: 1894–1903.
- 52Huang R, Pan J, Boccaccini AR, Chen QZ. A two-scale model for simultaneous sintering and crystallization of glass-ceramic scaffolds for tissue engineering. Acta Biomater 2008; 4: 1095–1103.
- 53Chaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM. Biomaterials and scaffolds in reparative medicine. Ann NY Acad Sci 2002; 961: 96–105.
- 54Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474–5491.
- 55Levenberg S, Langer R. Advances in tissue engineering. Curr Top Dev Biol 2004; 61: 113–134.
- 56Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 2000; 3: 114–119.
10.2225/vol3-issue2-fulltext-5 Google Scholar
- 57Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—State of the art and future perspectives. J Biomater Sci: Polym Ed 2001; 12: 107–24.
- 58Darby WJ. Trace elements in human health and disease. In: AS Prasad, D Oberleas, editors. Zinc and copper, Vol. 1. New York: Academic Press; 1976. p 17.
- 59Seeley RR, Stephens TD, Rate P. Anatomy and physiology, 8th ed. New York: McGrew Hill; 2006.
- 60Soetan KO, Olaiya CO, Oyewole OE. The importance of mineral elements for humans, domestic animals and plants: A review. Afr J Food Sci 2010; 4: 200–222.
- 61Whitney EN, Rolfes SR. Understanding Nutrition. Belmon: Wadsworth Publishing; 2010.
- 62Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 2001; 69: 121–129.
- 63Wong CT, Chen QZ, Lu WW, Leong JCY, Chan WK, Cheung KMC, Luk KDK. Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo. J Biomed Mater Res A 2004; 70: 428–435.
- 64Marie PJ, The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone 2010; 46: 571–576.
- 65Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, Lorenc R, Pors-Nielsen S, de Vernejoul MC, Roces A, Reginster JY. Strontium ranelate: Dose-dependent effects in established postmenopausal vertebral osteoporosis—A 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 2002; 87: 2060–2066.
- 66Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 1998; 11: 119–135.
- 67Lang C, Murgia C, Leong M, Tan L-W, Perozzi G, Knight D, Ruffin R, Zalewski P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am J Physiol Lung Cell Mol Physiol 2007; 292: L577–L584.
- 68Cousins RJ, A role of zinc in the regulation of gene expression. Proc Nutr Soc 1998; 57: 307–311.
- 69Murray RK, Granner DK, Mayer PA, Rodwell VW. Harper's Biochemistry, 25th ed. Health Profession Division: Mc-Graw Hill; 2000.
- 70Kaur G, Pandey OP, Singh K. Interfacial study between high temperature SiO2-B2O3-AO-La2O3 (A= Sr, Ba) glass seals and Crofer 22 APU for solid oxide fuel cell applications. Int J Hydrogen Energy 2012; 37: 6862–6874.
- 71Kaur G, Sharma P, Kumar V, Singh K. Assessment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: An optico-analytical approach. Mater Sci Eng C 2012; 32: 1941–1947.
- 72Madanat R, Moritz N, Vedel E, Svedstro E, Aro HT. Radio-opaque bioactive glass markers for radiostereometric analysis. Acta Biomater 2009; 5: 3497–3505.
- 73Lewis G, Van Hooy-Corstjens CS, Bhattaram A, Koole LH. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical properties: barium sulfate-containing cement versus iodine-containing cement. J Biomed Mater Res B 2005; 73: 77–87.
- 74Pierce DT, Spicer WE. Electronic structure of amorphous silicon from photoemission and optical studies. Phys Rev B 1972; 5: 3017–3029.
- 75Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci USA 1973; 70: 1608–1612.
- 76Barrett AJ. Cartilage. In: M Florkin, EH Stotz, editors. Comprehensive Biochemistry, Vol. 26B. New York: Elsevier; 1968. p 438–442.
- 77Birchall JD, Bellia JP, Roberts NB. On the mechanisms underlying the essentiality of silicon interactions with aluminium and copper. Coord Chem Rev 1996; 49: 231–240.
- 78Kwun IS, Cho YE, Lomeda AR, Shin HI, Choi JY, Kang YH, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010; 46: 732–741.
- 79Chandra RK, Micronutrients and immune functions: An overview. Ann NY Acad Sci 1990; 587: 9–16.
- 80Zhang JC, Huang JA, Xu SJ, Wang K, Yu SF. Effects of Cu2+ and pH on osteoclastic bone resorption in vitro. Prog Nat Sci 2003; 13: 266.
- 81Smith BJ, King JB, Lucas EA, Akhter MP, Arjmandi BH, Stoecker BJ. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J Nutr 2002; 132: 190–196.
- 82Cashman KD, Baker A, Ginty F, Flynn A, Strain JJ, Bonham MP, O'Connor JM, Bugel S, Sandstrom B. No effect of copper supplementation on biochemical markers of bone metabolism in healthy young adult female despite apparently improved copper status. Eur J Clin Nutr 2001; 55: 525–531.
- 83Finney L, Vogt S, Fukai T, Glesne D. Copper and angiogenesis: Unravelling a relationship key to cancer progression. Clin Exp Pharmacol Physiol 2009; 36: 88–94.
- 84Gerard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 2010; 31: 824–831.
- 85Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 1998; 69: 326–335.
10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 86Rodriguez JP, Rios S, Gonzalez M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem 2002; 85: 92–100.
- 87Beard JL. Iron biology in immune function, muscle metabolism and neural functioning. J Nutr 2001; 131: 5685–5695.
- 88Sadarzadeh SM, Saffari Y. Iron and brain disorder. Am J Clin Pathol 2004; 121: 64–70.
- 89Kingery WD, Bowen HK, Uhlmann DR. Introduction to Ceramics, 2nd ed. New York: John Wiley and Sons; 1976.
- 90Shelby JE. Introduction to Glass Science and Technology, 2nd ed. Cambridge: The Royal Society of Chemistry; 2005.
10.1039/9781847551160 Google Scholar
- 91Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 2000; 276: 461–465.
- 92Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass W45 S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcif Tissue Int 2000; 67: 321–329.
- 93Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of BioglassW 45 S5 dissolution. J Biomed Mater Res 2001; 55: 151–157.
- 94Vitale-Brovarone C, Verne E, Appendino P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J Mater Sci Mater Med 2006; 17: 1069–1078.
- 95Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater 2008; 4: 1854–1864.
- 96Brink M. The influence of alkali and alkali earths on the working range for bioactive glasses. J Biomed Mater Res 1997; 36: 109–117.
10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 97Goel A, Kapoor S, Rajagopal RR, Pascual MJ, Kim HW, Ferreira JMF. Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation. Acta Biomater 2012; 8: 361–372.
- 98Martins TB, Burlingams R, Van Muhlen CA, Jaskowski TD, Litwin CM, Hill HR. Evaluation of multiplexed fluorescent microsphere immunoassay for reflection of antibodies to nuclear antigens. Clin Diagn Lab Immunol 2004; 11; 1054–1059.
- 99Regi MV, Bala F. Silica material for biomedical applications. Open Biomed Eng J 2008; 2: 1–9.
- 100Michalczyk MJ, Sharp KG. Single Component Inorganic/Organic Network Materials and Precursors There of. US Patent5,378,790, 1995.
- 101Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc 2007; 90: 303–306.
- 102Huang WH, Day DE, Kittiratanapiboon K, Rahaman MN. Kinetics and mechanisms of the conversion of silicate (45 S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 2006; 17: 583–596.
- 103Liang W, Rahaman MN, Day DE, Marion NW, Riley GC, Mao JJ. Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids 2008; 354: 1690–1696.
- 104Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D. Crystallisation kinetics AO- Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg). J Mater Sci 2000; 35: 3089–3096.
- 105Yang X, Zhang L, Chen X, Sun X, Yang G, Guo X, Yang H, Gao C, Gou Z. Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non-Cryst Solids 2012; 358: 1171–1179.
- 106Uysal T, Ustdal A, Sonmez MF, Ozturk F. Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 2009; 79: 984–990.
- 107Nielsen FH. Is boron nutritionally relevant? Nutr Rev 2008; 66: 183–191.
- 108Chapin RE, Ku WW, Kenney MA, McCoy H, Gladen B, Wine RN, Wilson R, Elwell MR. The effects of dietary boron on bone strength in rats. Fundam Appl Toxicol 1997; 35: 205–215.
- 109Vitale-Brovarone C, Miola M, Balagna C, Verne E. 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J 2008; 137: 129–136.
- 110Marion NW, Liang W, Reilly GC, Day DE, Rahaman MN, Mao JJ. Borate glass supports the in vitro osteogen differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 2005; 12: 239–246.
- 111Zhang X, Jia W, Gua Y, Wei X, Liu X, Wang D, Zhang C, Huang W, Rahaman MN, Day DE, Zhou N. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 2010; 31: 5865–5874.
- 112Ning J, Yao A, Wang D, Huang W, Fu H, Liu X, Jiang X, Zhang X. Synthesis and in vitro bioactivity of a borate-based bioglass. Mater Lett 2007; 61: 5223–5226.
- 113Rahaman MN, Liang W, Day DE, Marion NW, Reilly GC, Mao JJ. Preparation and bioactive characteristics of porous borate glass substrates. Ceram Eng Sci Proc 2005; 26: 3–10.
- 114Marion NW, Liang W, Liang W, Reilly GC, Day DE, Rahaman MN, Mao JJ. Borate glass supports the in vitro osteogenic differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 2005; 12: 239–246.
- 115Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu WW. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med 2009; 20: 375–362.
- 116Liu X, Pan H, Fu H, Fu Q, Rahaman MN, Huang W. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution. Biomed Mater 2010; 5: 15005.
- 117Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu WW, Jiang X, Zhang X. Bioactive borosilicate glass scaffolds: In vitro degradation and bioactivity behaviours. J Mater Sci Mater Med 2009; 20: 1237–1243.
- 118Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF. Silicate borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 2010; 95: 172–179.
- 119Bunker BC, Arnold GW, Wilder JA. Phosphate glass dissolution in aqueous solutions. J Non-Cryst Solids 1984; 64: 291–316.
- 120Gao H, Tan T, Wang D. Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J Controlled Release 2004; 96: 29–36.
- 121Abou Neel EA, Mizoguchi T, Ito M, Bitar M, Salih V, Knowles JC. In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials 2007; 28: 2967–2977.
- 122Abou Neel EA, Knowles JC. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J Mater Sci Mater Med 2008; 19: 377–386.
- 123Abou Neel EA, Ahmed I, Pratten J, Nazhat SN, Knowles JC. Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 2005; 26: 2247–2254.
- 124Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 2004; 25: 3223–3232.
- 125Abou Neel EA, Ahmed I, Blaker JJ, Bismarck A, Boccaccini AR, Lewis MP, Nazhat SN, Knowles JC. Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 2005; 1: 553–563.
- 126Valappil SP, Pickup DM, Carroll DL, Hope CK, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC. Effect of silver content on the structure and antibacterial activity of silver-doped phosphatebased glasses. Antimicrob Agents Chemother 2007; 51: 4453–4461.
- 127Jeans LA, Gilchrist T, Healy D. Peripheral nerve repair by means of flexible biodegradable glass fibre wrap: A comparison with microsurgical epineuril repair. J Plast Reconstr Aesthet Surg 2007; 60: 1302–1308.
- 128Shah R, Sinanan ACM, Knowles JC, Hunt NP, Lewis MP. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials 2005; 26: 1497–1505.
- 129Vitale-Brovarone C, Verne E, Baino F, Ciapetti G, Leonardi E, Baldini N. Bioresorbable phosphate scaffolds for bone regeneration. Key Eng Mater 2008; 361: 241–244.
- 130Vitale-Brovarone C, Baino F, Bretcanu O, Verne E. Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: Synthesis and properties. J Mater Sci Mater Med 2009; 20: 2197–2205.
- 131Abou Neel EA, Chrzanowski W, Pickup DM, O'Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC. Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interf 2009; 6: 435–446.
- 132Navarro M, Del Valle S, Marti'nez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 2004; 25: 4233–4241.
- 133Cai S, Xu GH, Yu XZ, Zhang WJ, Xiao ZY, Yao KD. Fabrication and biological characteristics of b-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. J Mater Sci Mater Med 2009; 20: 351–358.
- 134Branda F, Arcobello-Varlese F, Costantini A, Luciani G. Effect of the substitution of M2O3 (M= La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5 CaO.2SiO2 glass Biomaterials 2002; 23: 711–716.
- 135Singh K, Bala I, Kumar V. Structural, optical and bioactive properties of calcium borosilicate glasses Ceram Int 2009; 35: 3401–3406.
- 136Singh K, Bahadur D. Characterization of SiO2±Na2O±Fe2O3±CaO±P2O5±B2O3 glass ceramics J Mater Sci Mater Med 1999; 10: 481–484.
- 137Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011; 32: 2757–2774.
- 138Wang XP, Li X, Ito A, Sogo Y. Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MO-SiO(2)-P(2)O(5) (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 2011; 7: 3638–3644.
- 139Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 2002; 46: 1940–1945.
- 140Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials—A review. Trends Biomater Artif Organs 2004; 18: 9–17.
- 141Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M. Sol–gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Adv Appl Ceram 2009; 108: 155–161.
- 142Luderer AA, Borrelli NF, Panzarina JN, Mansfield GR, Hess DM, Brown JL, Barnett EH, Hawn EW. Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma. Radiat Res 1983; 94: 190–198.
- 143Vitale-Brovarone C, Verne E, Bosetti M, Appendino P, Cannas M. Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes, J Mater Sci: Mater Med 2005; 16: 909–917.
- 144Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 2011; 7: 3547–3554.
- 145Navarro M, Ginebra MP, Clement J, Martinez S, Avila G, Planell JA. Physico-chemical degradation of soluble phosphate glasses stabilized with TiO2 for medical applications. J Am Ceram Soc 2003; 86: 1345–1352.
- 146Navarro M, Clement J, Ginebra MP, Martinez S, Avila G, Planell JA. Improvement of the stability and mechanical properties of resorbable phosphate glasses by the addition of TiO2. In: Proceedings of the 14th International Symposium on Ceramics in Medicine, Bioceramics 14, November 14–17, Palms Springs; 2002. p 275–278.
- 147Johnson WL. Bulk glass-forming metallic alloys: science and technology. MRS Bull 1999; 24: 42–56.
- 148Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Eng R Rep 2004; 44: 45–89.
- 149Kawamura Y, Shibata T, Inoue A, Masumoto T. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta Mater 1997; 46: 253–263.
- 150Hiromoto S, Tsai A P, Sumita M. Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu7.5 amorphous alloy in phosphate buffered solution. Corros Sci 2000; 42: 1651–1660.
- 151Hiromoto S, Tsai AP, Sumita M. Effect of pH on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in a phosphate-buffered solution. Corros Sci 2000; 42: 2193–2200.
- 152Hiromoto S, Tsai AP, Sumita M. Effects of surface finishing and dissolved oxygen on the polarization behavior of Zr65Al7.5Ni10Cu17.5amorphous alloy in phosphate buffered solution. Corros Sci 2000; 42: 2167–2185.
- 153Hiromoto S, Hanawa T. Re-passivation current of amorphous Zr65Al7.5Ni10Cu17.5 alloy in a Hanks' balanced solution. Electrochim Acta 2002; 47: 1343–1349.
- 154Morrison ML, Buchanan RA, Peker A. Cyclic-anodicpolarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 2004; 12: 1177–1181.
- 155Morrison M L, Buchanan R A, Leon RV. The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J Biomed Mater Res A 2005; 74: 430–438.
- 156Horton JA, Parsell DE. Biomedical potential of a zirconium-based bulk metallic glass. Mater Res Soc Symp Proc 2003; 754: CC1.5.1.
- 157Maruyama N, Hiromoto S, Ohnuma M. Fretting fatigue properties of Zr-based bulk amorphous alloy in phosphate buffered saline solution. J Jpn Inst Metals 2005; 69: 481–487.
- 158McGregor DB, Baan RA, Partensky C. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies—A report of an IARC Monographs Programme Meeting. Eur J Cancer 2000; 36: 307–313.
- 159Jin KF, Löffler JF. Bulk metallic glass formation in Zr-Cu-Fe-Al alloys. Appl Phys Lett 2005; 86: 241909.
- 160Zberg B, Arata ER, Uggowiter PJ. Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 2009; 57: 3223–3231.
- 161Zberg B, Uggowiter PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 2009; 8: 887–891.
- 162Liu L, Yu Y, Chan KC. Bio-activation of Ni-free Zr-based bulk metallic glass by surface modification. Intermetallics 2009; 18: 1978–1982.
- 163Chen Q, Liu L, Zhang SM. The potential of Zr-based bulk metallic glasses as biomaterials. Front Mater Sci China 2010; 4: 34–44.
10.1007/s11706-010-0004-5 Google Scholar
- 164Kanematsu N, Shibata K, Yamagami A, Kotera S, Yoshihara Y. Cytotoxicity of anodized titanium and polycrystalline zirconia in cultured mammalian cells. Jpn J Oral Biol 1985; 27: 382–384.
- 165Yamada K, Nakamura S, Tsuchiya T, Yamashita K. Electroceramics in Japan IV. Key Eng Mater 2002; 216: 149–152.
- 166Day RM, Maquet V, Boccaccini AR, Jerome R, Forbes A. In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass, J Biomed Mater Res A 2005; 75: 778–787.
- 167Lai W, Garino J, Ducheyne P. Silicon excretion from bioactive glass implanted in rabbit bone. Biomaterials 2002; 23: 213–217.
- 168Brink M, Turunen T, Happonen R, Yli-Urppo A. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Biomed Mater Res 1997; 37: 114–121.
10.1002/(SICI)1097-4636(199710)37:1<114::AID-JBM14>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 169Cunha C, Sprio S, Panseri S, Dapporto M, Marcacci M, Tampieri A. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone-defects. J Biomed Mater Res A. DOI: 10:1002/Jbm,a.34479.
- 170Seeley Z, Bandyopadhay A, Bose S. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics. J Biomed Mater Res A 2007; 82: 113–121.
- 171Novak S, Druce J, Chen QZ, Boccaccini AR. TiO2 foams with poly-(D,L-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds. J Mater Sci 2009; 44: 1442–1448.
- 172Pazo A, Saiz E, Tomsia AP. Silicate glass coatings on Ti-based implants, Acta Mater 1998; 46: 2551–2558.
- 173Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ. Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing. Biomaterials 2000; 21: 105–111.
- 174Saiz E, Goldman M, Gomez-Vega JM, Tomsia AP, Marshall GW, Marshall SJ. In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials 2002; 23: 3749–3756.
- 175Zones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 2007; 27: 964–973.
- 176Hollinger JO, Brekke J, Groskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 1999; 324: 55–65.
10.1097/00003086-199603000-00008 Google Scholar
- 177Fukasawa T, Ando M, Ohji T, Kanzaki S. Synthesis of porous ceramics with complex pore structure by freeze drying processing. J Am Ceram Soc 2001; 84: 230–232.
- 178Deville S., Saiz E, Tomsia A, Freeze coating of hydroxyapatite scaffolds for bone tissue engineering, Biomaterials 2006; 27: 5480–5489.
- 179Regi MV. Ceramics for medical applications. J Chem Soc Dalton Trans 2001; 2: 97–108.
- 180Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 2007; 13: 947–955.
- 181O'Connor TL, Greenberg SA. The kinetics for the solution of silica in autoes solutions. J Phys Chem 1958; 62: 1195–1198.
- 182Hench LL, Clark DE. Physical chemistry of glass surfaces. J Non-Cryst Solids 1978; 28: 83–105.
- 183Regi CV, Vallet-Regi M, Rodriguez Lorenzo LM. Preparation and in vitro of hydroxyapatite/solgel glass biphasic material, Biomaterial 2002; 23: 1865–1872.
- 184Bohner M. Silicon substituted calcium phosphates: A critical review. Biomaterials 2009; 30: 6403–6406.
- 185Wilson J, Pigott GH, Schoen FJ, Hench LL. Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 1981; 15: 805–817.
- 186Murphy S, Wren AW, Towler MR, Boyd D. The effect of ionic dissolution products of Ca-Sr-Na-Zn-Si bioactive glass on in vitro cytocompatibilty. J Mater Sci: Mater Med 2010; 21: 2827–2834.
- 187Weinstein AM, Klawitter, Cook SD. Implant-bone interface characteristics of bioglass dental implants. J Biomed Mater Res 1980; 14: 23–29.
- 188Smith JR. Bone dynamics associated with the controlled loading of bioglass-coated aluminium oxide endosteal implants. Am J Orthod 1979; 76: 618–636.
- 189Stanley H, Hench LL, Going R, Benett C, Chellemi SJ, King C, Ingersoll N, Ethridge E, Kreutziger K. The implantation of natural of natural tooth form bioglasses in baboons. Oral Surg Oral Med Oral Pathol 1976; 42: 459–469.
- 190Murphy S, Boyd D, Moane S, Bennett M. The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. J Mater Sci: Mater Med 2009; 20: 2028–2035.
- 191Keeting P, Oursler MJ, Wiegand KE, Bonde SK, Spelsberg TC, Riggs BL. Zeolite A increases proliferation, differentiation and TGF-beta production in normal adult human osteoblast-like cells in vitro. J Biomed Mater Res 1992; 7: 1281–1289.
- 192Hott M, de Pollak C, Modrowski D, Marie PJ. Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcif Tissue Int 1993; 53: 174–179.
- 193Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D. Cytotoxicity of zinc containing bioactive glasses in contact with human osteoblasts. Chem-Biol Interat 2007; 167: 207–218.
- 194Pal S, He K, Aizenman E. Nitrosative stress and potassium channel-mediated neuronal apoptosis: is zinc the link? Pflugers Arch 2004; 448: 296–303.
- 195Noh KM, Koh JH. Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 2000; 20: RC111.
- 196Ito A, Ojima K, Naito H, Ichinose N, Tateishi T. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 2000; 50: 178–183.
10.1002/(SICI)1097-4636(200005)50:2<178::AID-JBM12>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 197Wood JPM, Osborne NN. Zinc and energy requirements in induction of oxidative stress to retinal pigmented epithelial cells. Neurochem Res 2003; 10: 1525–1533.
- 198Del Rio MJ, V'elez-Pardo C. Transition metal-induced apoptosis in lymphocytes via hydroxyl radical generation, mitochondria dysfunction, and caspase-3 activation: An in vitro model for neurodegeneration. Arch Med Res 2004; 35: 185–193.
- 199Tang ZL, Wasserloos K, Croix CMS, Pitt BR. Role of zinc in pulmonary endothelial cell response to oxidative stress, Am J Physiol (Lung) 2001; 281: 243–249.
- 200Orive G, Gascon AR, Hernandez RM, Igartua M, Pedraz JL. Cell microencapsulation technology for biomedical purposes: novel insights and challenges, Trends Pharmacol Sci 2003; 24: 207–210.
- 201Hasse C, Zielke A, Klock G, Schlosser A, Barth P, Zimmermann U, Sitter H, Lorenz W, Rothmund M. Amitogenic alginates: Key to first clinical application of microencapsulation technology. World J Surg 1998; 22: 659–665.
- 202Scharp DW Swanson CJ, Olack BJ, Latta PP, Hegre OD, Doherty EJ, Gentile FT, Flavin KS, Ansara MF, Lacy PE. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 1994; 43: 1167–1170.
- 203Murua A, Portero A, Orive G, Hernandez RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Controlled Release 2008; 132: 76–83.
- 204De Vos P, Andersson A, Tam SK, Faas MM, Halle JP. Advances and barriers in mammalian cell encapsulation for treatment of diabetes. Immunol Endocr Metabol Agents Med Chem 2006; 6: 139–153.
10.2174/187152206776359948 Google Scholar
- 205Zimmermann U, Mimietz S, Zimmermann H, Hillgärtner M, Schneider H, Ludwig J, Hasse C, Haase A, Rothmund M, Fuhr G. Hydrogel-based non-autologous cell and tissue therapy. Biotechniques 1998; 29: 564–581.
- 206Sakai S, Ono T, Ijima H, Kawakami K. Synthesis and transport characterization of alginate/aminopropyl-silicate/alginate microcapsule: Application to bioartificial pancreas. Biomaterials 2001; 22: 2827–2834.
- 207Calafior R, Basta G, Luca G, Boselli C, Bufalari A, Bufalari A, Cassarani MP, Giustozzi GM, Brunetti P. Transplantation of minimal volume microcapsules in diabetic high mammalians. Ann NY Acad Sci 1999; 875: 219–232.
- 208Leoni L, Desai TA. Nanoporous biocapsules for the encapsulation of insulinoma cells: Biotransport and biocompatibility. IEEE Trans Biomed Eng 2001; 48: 1335–1341.
- 209Strand BL, Morch YA, Syvertsen KR, Espevik T, Skjak-Braek G. Microcapsules made by enzymatically tailored alginate. J Biomed Mater Res A 2003; 64: 540–550.
- 210Hasse C, Klock G, Schlosser A, Zimmermann U, Rothmund M. Parathyroid allotransplantation without immunosuppression. Lancet 1997; 350: 1296–1297.
- 211Xu W, Liu L, Charles IG. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J 2002; 16: 213–215.
- 212Visted T, Bjerkvig R, Enger PO. Cell encapsulation technology as a therapeutic strategy for CNS malignancies. Neurol Oncol 2001; 3: 201–210.