Calcium phosphate coatings obtained by Nd:YAG laser cladding: Physicochemical and biologic properties
F. Lusquiños
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorA. De Carlos
Dpto. de Bioquímica, Genética e Inmunología, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorCorresponding Author
J. Pou
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Dpto. Física Aplicada, Universidade de Vigo, Vigo, SpainSearch for more papers by this authorJ. L. Arias
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorM. Boutinguiza
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorB. León
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorM. Pérez-Amor
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorF. C. M. Driessens
University of Nijmegen, Calcio B.V., Ohe En Laak, The Netherlands
Search for more papers by this authorK. Hing
IRC in Biomedical Materials, Queen Mary and Westfield College, Mile End Road, London, E1 4NS, United Kingdom
Search for more papers by this authorI. Gibson
IRC in Biomedical Materials, Queen Mary and Westfield College, Mile End Road, London, E1 4NS, United Kingdom
Search for more papers by this authorS. Best
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Search for more papers by this authorW. Bonfield
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Search for more papers by this authorF. Lusquiños
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorA. De Carlos
Dpto. de Bioquímica, Genética e Inmunología, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorCorresponding Author
J. Pou
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Dpto. Física Aplicada, Universidade de Vigo, Vigo, SpainSearch for more papers by this authorJ. L. Arias
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorM. Boutinguiza
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorB. León
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorM. Pérez-Amor
Dpto. Física Aplicada, Universidade de Vigo, Vigo, Spain
Search for more papers by this authorF. C. M. Driessens
University of Nijmegen, Calcio B.V., Ohe En Laak, The Netherlands
Search for more papers by this authorK. Hing
IRC in Biomedical Materials, Queen Mary and Westfield College, Mile End Road, London, E1 4NS, United Kingdom
Search for more papers by this authorI. Gibson
IRC in Biomedical Materials, Queen Mary and Westfield College, Mile End Road, London, E1 4NS, United Kingdom
Search for more papers by this authorS. Best
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Search for more papers by this authorW. Bonfield
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Search for more papers by this authorAbstract
The plasma spray (PS) technique is the most popular method commercially in use to produce calcium phosphate (CaP) coatings to promote fixation and osteointegration of the cementless prosthesis. Nevertheless, PS has some disadvantages, such as the poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In order to overcome the drawbacks of plasma spraying, we introduce in this work a new method to apply a CaP coating on a Ti alloy using a well-known technique in the metallurgical field: laser surface cladding. The physicochemical characterization of the coatings has been carried out by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The biologic properties of the coatings have been assessed in vitro with human osteoblast-like MG-63 cells. The overall results of this study affirm that the Nd:YAG laser cladding technique is a promising method in the biomedical field. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 64A: 630–637, 2003
References
- 1 K de Groot, editor. Bioceramics of calcium phosphate. Boca Raton, FL: CRC Press; 1983.
- 2de Groot K, Geesink R, Klein CPAT. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 1987; 21: 1375–1381.
- 3García Sanz FJ, Mayor MB, Arias JL, Pou J, León B, Pérez Amor M. Hydroxyapatite coatings a comparative study between plasma-spray and pulsed laser deposition techniques. J Mater Sci Mat Med 1997; 8: 861–865.
- 4Klein CPAT, Wolke JGC, de Groot K. Stability of calcium phosphate ceramics and plasma sprayed coatings. In: LL Hench, J Wilson, editors. An introduction to bioceramics. Singapore: World Scientific; 1993. p 199–222.
10.1142/9789814317351_0011 Google Scholar
- 5Lacefield WR. Hydroxyapatite coatings. In: LL Hench, J Wilson, editors. An introduction to bioceramics. Singapore: World Scientific;1993. p 223–238.
10.1142/9789814317351_0012 Google Scholar
- 6Yang CY, Wang BC, Chang E, Wu JD. The influence of plasma spraying parameters on the characteristics of hydroxyapatite coatings: a quantitative study. J Mater Sci Mat Med 1992: 6; 249–265.
- 7Oguchi H, Ishikawa K, Ojima S, Hirayama Y, Seto K, Eguchi G. Evaluation of a high-velocity flame-spaying technique for hydroxyapatite. Biomaterials 1992: 13; 471–477.
- 8Wolke JGC, Van Dijk K, Schacen HG, de Groot K, Jansen JA. Study of the surface characteristics of magnetron sputter calcium phosphate coatings. J Biomed Mater Res 1994: 28; 1477–1484.
- 9Chen TS, Lacefield WR. Crystallization of ion beam deposited calcium phosphate coatings. J Mater Res 1994: 9; 1284–1290.
- 10Shirkhanzadeh M, Azadegan M, Stack V, Schreyer S. Fabrication of pure hydroxyapatite and fluoridated-hydroxyapatite coatings by electrocrystalisation. Mater Lett 1994: 18; 211–214.
- 11Cotell CM, Chrisey DB, Grabowski KS, Sprague JA, Grossett CR. Pulsed laser deposition of hydroxylapatite thin films on Ti-6Al-4V. J Appl Biomater 1992; 3: 87–93.
- 12Baeri P, Torrisi L, Marino N, Foti G. Ablation of hydroxyapatite by pulsed laser ablation. Appl Surf Sci 1992; 54: 210–214.
- 13Sardin G, Varela M, Morenza JL. Deposition of hydroxyapatite coatings by laser ablation. In: PW Brown, B Constanz, editors. Hydroxyapatite and related materials. Boca Raton, FL: CRC Press; 1994. p 225–230.
- 14Antonov EN, Bagratashvili VN, Sobol EN, Smith R, Howdle SM. Excimer laser deposition of patite at room temperature on titanium substrates. J Phys IV 1994; C4- 183–186.
- 15García F, Arias JL, Mayor B, Pou J, Rehman J, Knowles J, Best S, León B, Pérez-Amor M, Bonfield W. Effect of heat treatment on pulsed laser deposited amorphous calcium phosphate coatings. J Biomed Mater Res 1998; 43: 69–76.
10.1002/(SICI)1097-4636(199821)43:1<69::AID-JBM8>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 16Kim HM, Mijaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 1996; 32: 409–417.
10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 17Wen HB, De Wijn JR, Liu Q, de Groot K, Cui FZ. A simple method to prepare calcium phosphate coatings on Ti6Al4V. J Mater Sci Mat Med 1997; 8: 765–770.
- 18Steen WM. Laser materials processing. London: Springer-Verlag; 1993. p 199–205.
- 19Rae T. Tissue culture techniques in biocompatibility testing. In: DF Williams, editor. Techniques of biocompatibility testing. Vol II. Boca Raton, FL: CRC Press; 1986. p 81–93.
- 20Clover J, Gowen M. Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 1994; 15: 585–591.
- 21Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 1996; 32: 55–63.
10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 22Price N, Bendall SP, Frondoza C, Jinnah RH, Hungerford DS. Human osteoblastlike cells (MG63) proliferate on a bioactive glass surface. J Biomed Mater Res 1997; 37: 394–400.
10.1002/(SICI)1097-4636(19971205)37:3<394::AID-JBM10>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 23Kue R, Sohrabi A, Nagle D, Frondoza C, Hungerford D. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 on silicon nitride ceramic discs. Biomaterials 1999; 20: 1195–1201.
- 24 MA Clevinger, CL Cedeno, editors. Phase equilibria diagrams. Vols I–XII. Columbus, OH: American Ceramic Society; 1991–1993.