Biologic effects of surface roughness and fluorhydroxyapatite coating on osteointegration in external fixation systems: An in vivo experimental study
Corresponding Author
L. Savarino
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, ItalySearch for more papers by this authorM. Fini
Servizio di Chirurgia Sperimentale, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Bologna, Italy
Search for more papers by this authorG. Ciapetti
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorE. Cenni
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorD. Granchi
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorN. Baldini
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorM. Greco
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorR. Giardino
Servizio di Chirurgia Sperimentale, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Bologna, Italy
Search for more papers by this authorA. Giunti
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorCorresponding Author
L. Savarino
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, ItalySearch for more papers by this authorM. Fini
Servizio di Chirurgia Sperimentale, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Bologna, Italy
Search for more papers by this authorG. Ciapetti
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorE. Cenni
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorD. Granchi
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorN. Baldini
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorM. Greco
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorR. Giardino
Servizio di Chirurgia Sperimentale, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Bologna, Italy
Search for more papers by this authorA. Giunti
Laboratorio di Fisiopatologia degli Impianti Ortopedici, Istituti Ortopedici Rizzoli, Bologna and Università di Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
Search for more papers by this authorAbstract
The concomitant influence of surface roughness and fluorhydroxyapatite (FHA) coating of titanium (Ti) implants on bone response was investigated. For this purpose, titanium screw-shaped implants with a lower degree (Y371) and a higher degree (TiPore300) of surface roughness, coated with FHA and uncoated, were transversally inserted into the diaphyses of sheep tibiae for 12 weeks. Four sheep received Y371 (group A) and Y371 + FHA (group B) screws and four sheep received TiPore300 (group C) and TiPore300 + FHA (group D) screws. For each type of material, the morphology and microstructure of implant–facing bone were evaluated. The host bone of each tibia was used as a control. In all groups the bone tissue did not reach a complete maturation. The higher degree of roughness, perhaps due to an excessive irregularity of the surface, induced the worst osteointegration: a fibrous tissue layer between screw and new bone tissue was often present. Nevertheless, as viewed by XRD, no crystallographic change of the apatite lattice was observed in any of the implants. In contrast, the microhardness value, an index of bone mineralization, was higher in the uncoated screws and decreased progressively in the following order: group C > group A > group B > group D. The association of plasma spraying with roughness treatment constitutes a complex system that seems to interfere with bone mineralization. A chemical change of the surface, perhaps with more Ti release or more coating degradation, could be responsible for such impairment. The authors emphasize the necessity for simultaneous evaluation of surface topography and chemistry as well as an improvement in plasma-spraying and post-processing techniques and in standard procedures for materials characterization. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 652–661, 2003
References
- 1 Pizzoferrato A, Stea S, Savarino L, Granchi D, Ciapetti G. Histomorphometric evaluation and pathogenesis of prosthetic loosening. Chir Organ Mov 1994; 79: 245–255.
- 2 Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998; 19: 2219–2232.
- 3
Lohmann CH,
Sagun R Jr,
Sylvia VL,
Cochran DL,
Dean DD,
Boyan BD,
Schwartz Z.
Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25-(OH)(2)D(3) through regulation of phospholipase A(2) activity and activation of protein kinase A.
J Biomed Mater Res
1999;
47:
139–151.
10.1002/(SICI)1097-4636(199911)47:2<139::AID-JBM4>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 4 Schwartz Z, Lohmann CH, Sisk M, Cochran DL, Sylvia VL, Simpson J, Dean DD, Boyan BD. Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1,25-(OH)2D3 is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials 2001; 22: 731–741.
- 5 Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 2001; 22: 1241–1251.
- 6 Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001; 22: 87–96.
- 7 Wieland M, Sittig C, Brunette DM, Textor M, Spencer ND. Measurement and evaluation of the chemical composition and topography of titanium implant surfaces. In: JE Davies, editor. Bone engineering. Toronto: em squared inc.; 2000. p 163–182.
- 8 Geesink RG. Osteoconductive coatings for total joint arthroplasty. Clin Orthop 2002; 395: 53–65.
- 9 Søballe K, Hansen ES, Brockstedt–Rasmussen H, Bünger C. Hydroxyapatite coating converts fibrous anchorage to bony fixation during continuous implant loading. J Bone Joint Surg 1993; 75B: 270–278.
- 10 Søballe K, Overgaard S, Hansen ES, Brockstedt-Rasmussen H, Lind M, Bünger C. A review of ceramic coatings for implant fixation. J Long-Term Effects Med Implants 1999; 9: 131–151.
- 11 Moroni A, Caja VL, Maltarello MC, Savarino L, Marinelli F, Stea S, Visentin M, Giannini S. Biomechanical, scanning electron microscopy, and microhardness analyses of the bone–pin interface in hydroxyapatite coated versus uncoated pins. J Orthop Trauma 1997; 11: 1154–1161.
- 12
Overgaard S,
Lind M,
Josephsen K,
Maunsbach AB,
Bünger C,
Søballe K.
Resorption of hydroxyapatite and fluorapatite ceramic coatings on weight-bearing implants: A quantitative and morphological study in dogs.
J Biomed Mater Res
1998;
39:
141–152.
10.1002/(SICI)1097-4636(199801)39:1<141::AID-JBM16>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 13
Clemens JAM,
Klein CPAT,
Sakkers RJB,
Dhert WJA,
de Groot K,
Rozing PM.
Healing of gaps around calcium phosphate-coated implants in trabecular bone of the goat.
J Biomed Mater Res
1997;
36:
55–64.
10.1002/(SICI)1097-4636(199707)36:1<55::AID-JBM7>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 14
Gineste L,
Gineste M,
Ranz X,
Ellefterion A,
Guilhem A,
Rouquet N,
Frayssinet P.
Degradation of hydroxylapatite, fluorapatite, and 15. fluorhydroxyapatite coatings of dental implants in dogs.
J Biomed Mater Res, Appl Biomater
1999;
48:
224–234.
10.1002/(SICI)1097-4636(1999)48:3<224::AID-JBM5>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 15
Savarino L,
Stea S,
Ciapetti G,
Granchi D,
Donati ME,
Cervellati M,
Visentin M,
Moroni A,
Pizzoferrato A.
The interface of bone microstructure and an innovative coating: An X-ray diffraction study.
J Biomed Mater Res
1998;
40:
86–91.
10.1002/(SICI)1097-4636(199804)40:1<86::AID-JBM10>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 16 Ranz X, Rey C, Antolotti N, Harmand MF, Moroni A, Orienti L, Viola G, Bertini S, Scrivani A. Properties of plasma sprayed bioactive fluorohydroxyapatite coatings. In: L Sedel, C Rey, editors. Bioceramics. Paris: Elsevier Science Ltd; 1997. p 10.
- 17 Fini M, Savarino L, Nicoli Aldini N, Martini L, Giavaresi G, Rizzi G, Martini D, Ruggeri A, Giunti A, Giardino R. Biomechanic and histomorphometric investigation on two titanium surfaces with different morphology with and without fluorohydroxyapatite coating. An experimental study in the sheep tibiae. Submitted for publication.
- 18 Chesley R. X-ray diffraction camera for microtechniques. Rev Sci Instr 1947; 18: 422–427.
- 19 Savarino L, Cenni E, Stea S, Donati ME, Paganetto G, Moroni A, Toni A, Pizzoferrato A. X-ray diffraction of newly formed bone close to alumina or hydroxyapatite-coated femoral stem. Biomaterials 1993; 14: 900–905.
- 20 Savarino L, Stea S, Ciapetti G, Paganetto G, Donati ME, Alvergna P, Pizzoferrato A, Microstructural investigation of bone–cement interface. J Biomed Mater Res 1995; 29: 701–705.
- 21 ASTM Test Method E384-99. In: ASTM standards. Philadelphia: American Society for Testing and Materials; 2001.
- 22
Vercaigne S,
Wolke JGC,
Naert I,
Jansen JA.
Histomorphometrical and mechanical evaluation of titanium plasma-spray-coated implants placed in the cortical bone of goats.
J Biomed Mater Res
1998;
41:
41–48.
10.1002/(SICI)1097-4636(199807)41:1<41::AID-JBM5>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 23
Ratner B.
The engineering of biomaterials exhibiting recognition and specificity.
Mol Recognition
1996;
9:
617–625.
10.1002/(SICI)1099-1352(199634/12)9:5/6<617::AID-JMR310>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 24 Baig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WI, Chettry A, Zhuang H, Otsuka M. Relationship among carbonate apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int 1999; 64: 437–449.
- 25 Hofmann AA, Bloebaum RD, Bachus K. Progression of human bone ingrowth into porous–coated implants. Acta Orthop Scand 1997; 68: 161–166.
- 26 Osborn JF, Willick P, Neenen N. The release of titanium into human bone from a titanium implant coated with plasma-sprayed titanium. Adv Biomater 1990; 9: 75–80.
- 27
Lucas LC,
Lemons JE,
Lee J,
Dale P.
In vitro corrosion of porous alloys. In:
JE Lemons, editor.
Quantitative characterization and performance of porous implants for hard tissue applications.
Philadelphia:
American Society for Testing and Materials, STP 93;
1987. p
124–136.
10.1520/STP25226S Google Scholar
- 28 Black J, Sherk H, Bonini J, Rostoker WR, Schajowicz F, Galante JO. Metallosis associated with a stable titanium alloy femoral component in total hip replacement. J Bone Joint Surg 1990; 72A: 126–130.
- 29 Murray DW, Rae T, Rushton N. The influence of the surface energy and roughness of implants on bone resorption. J Bone Joint Surg 1989; 71B: 632–637.
- 30 Sousa SR, Barbosa MA. Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates. Biomaterials 1996; 17: 397–404.
- 31 Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, Hildebrand HF, Iost A, Leroy JM. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 2000; 21: 1567–1577.