Utilizing the spatial frequency domain imaging to investigate change in optical parameters of skin exposed to thermal-hydrotherapy: Ex-vivo study
Rania M. Abdelazeem
Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences “NILES,” Cairo University, Giza, Egypt
Search for more papers by this authorCorresponding Author
Omnia Hamdy
Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences “NILES,” Cairo University, Giza, Egypt
Correspondence
Omnia Hamdy, Engineering Applications of Laser Department, National Institute of Laser Enhanced Sciences “NILES,” Cairo University, Giza 12613, Egypt.
Email: [email protected]
Search for more papers by this authorRania M. Abdelazeem
Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences “NILES,” Cairo University, Giza, Egypt
Search for more papers by this authorCorresponding Author
Omnia Hamdy
Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences “NILES,” Cairo University, Giza, Egypt
Correspondence
Omnia Hamdy, Engineering Applications of Laser Department, National Institute of Laser Enhanced Sciences “NILES,” Cairo University, Giza 12613, Egypt.
Email: [email protected]
Search for more papers by this authorAbstract
Hydrotherapy is a traditional clinical practice that has been widely used for pain relief. However, immersion in hot water influences skin's moisture and morphology. In this study, we investigate the physiological changes of ex-vivo chicken skin immersed in hot water (at 40 and 50°C) via monitoring the change in its absorption and scattering properties using the spatial frequency domain imaging (SFDI) technique. The procedure started by calculating the modulation transfer function of the proposed imaging system over a range of spatial frequencies using a high-resolution test target. Thereafter, structured illumination patterns at different spatial frequencies were projected onto the examined samples via a reflective phase-only spatial light modulator using transmission and reflection modes. The transmission and reflection images were recorded using a digital camera to reconstruct the optical absorption and scattering parameters. Such parameters were calculated using Kubelka–Munk and lookup table methods. For system validation, the optical properties of two kinds of milk (skimmed and full cream), as reference samples, were reconstructed using the proposed SFDI system in the reflection mode via lookup table method. The results revealed an increase in the scattering coefficient of the skin samples immersed in higher water temperature, while the absorption coefficient values were nearly the same. Furthermore, the obtained results were validated using Monte-Carlo method showing absolute errors that range from 0.004 to 0.057. In conclusion, the proposed system was presented to investigate the changes in ex-vivo skin properties under thermal-hydrotherapy in the context of measured changes in optical parameters.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors
REFERENCES
- 1Devkate GV, Tate SS, Deokate SB, Bhujbal AS, Tupe AP, Patil RN. Hydrotherapy a new trend in disease treatment. Int J Sci Res Methodol. 2016; 5: 117-135.
- 2El Abdi R, Rujinski AD, Poulain M. Effects of immersion duration and temperature on mechanical properties of optical fibers aged in CTAC aqueous solution. Eng Sci Technol an Int J. 2015; 18: 52-58. doi:10.1016/j.jestch.2014.09.003
10.1016/j.jestch.2014.09.003 Google Scholar
- 3Mooventhan A, Nivethitha L. Scientific evidence-based effects of hydrotherapy on various systems of the body, N. Am J Med Sci. 2014; 6: 199-209. doi:10.4103/1947-2714.132935
- 4An J, Lee I, Yi Y. The thermal effects of water immersion on health outcomes: An integrative review. Int J Environ Res Public Health. 2019; 16: 1280. doi:10.3390/ijerph16071280
- 5Buijze GA, Sierevelt IN, van der Heijden BCJM, Dijkgraaf MG, Frings-Dresen MHW. The effect of cold showering on health and work: a randomized controlled trial. PLoS One. 2016; 11: 1-15. doi:10.1371/journal.pone.0161749
- 6Kohara K, Tabara Y, Ochi M, et al. Habitual hot water bathing protects cardiovascular function in middle-aged to elderly Japanese subjects. Sci Rep. 2018; 8: 1-8. doi:10.1038/s41598-018-26908-1
- 7Abdelazeem RM, Ahmed MM, Hamdy O, Monitoring the optical diffuse transmittance of skin during Thermo-hydrotherapy via spatial frequency domain imaging: a pilot study. Paper presented at Biophotonics Congress: Optics in the Life Sciences; 2021.
- 8Gioux S, Mazhar A, Cuccia DJ. Spatial frequency domain imaging in 2019: principles, applications, and perspectives. J Biomed Opt. 2019; 24: 1-18. doi:10.1117/1.jbo.24.7.071613
- 9Tuchin VV. Tissue optics: light scattering methods and instruments for medical diagnosis. SPIE PRESS; 2007. doi:10.1117/3.684093
10.1117/3.684093 Google Scholar
- 10Cuccia DJ, Bevilacqua F, Durkin AJ, Tromberg BJ. Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt Lett. 2005; 30: 1354-1356. doi:10.1364/ol.30.001354
- 11Cuccia DJ, Bevilacqua F, Durkin AJ. Quantitation and mapping of tissue optical properties using modulated imaging. J Biomed Opt. 2009; 14: 1-31. doi:10.1117/1.3088140.Quantitation
- 12Weber JR, Cuccia DJ, Johnson WR, et al. Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer. J Biomed Opt. 2011; 16:11015. doi:10.1117/1.3528628
- 13O'Sullivan TD, Cerussi AE, Cuccia DJ, Tromberg BJ. Diffuse optical imaging using spatially and temporally modulated light. J Biomed Opt. 2012; 17:071311-1–14. doi:10.1117/1.JBO.17.7.071311
- 14Saager RB, Cuccia DJ, Saggese S, Kelly KM, Durkin AJ. A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging. Lasers Surg Med. 2013; 45: 207-215. doi:10.1002/lsm.22139
- 15Mazhar A, Sharif SA, David Cuccia J, Stuart Nelson J, Kelly KM, Durkin AJ. Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: a pilot study. Lasers Surg Med. 2012; 44: 611-621. doi:10.1002/lsm.22067
- 16Rohrbach DJ, Muffoletto D, Huihui J, et al. Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging. Acad Radiol. 2014; 21: 263-270. doi:10.1016/j.acra.2013.11.013
- 17Nandy S, Mostafa A, Kumavor PD, Sanders M, Brewer M, Zhu Q. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging. J Biomed Opt. 2016; 21:101402-1–8. doi:10.1117/1.jbo.21.10.101402
- 18Yafi A, Muakkassa FK, Pasupneti T, et al. Quantitative skin assessment using spatial frequency domain imaging (SFDI) in patients with or at high risk for pressure ulcers. Lasers Surg Med. 2017; 49: 827-834. doi:10.1002/lsm.22692
- 19Ponticorvo A, Rowland R, Baldado M, et al. Spatial frequency domain imaging (SFDI) of clinical burns: a case report. Burn Open. 2020; 4: 67-71. doi:10.1016/j.burnso.2020.02.004
- 20Phan T, Rowland R, Ponticorvo A, et al. Characterizing reduced scattering coefficient of normal human skin across different anatomic locations and Fitzpatrick skin types using spatial frequency domain imaging. J Biomed Opt. 2021; 26:026001-1–11. doi:10.1117/1.jbo.26.2.026001
- 21Kennedy GT, Stone R, Kowalczewski AC, et al. Spatial frequency domain imaging: a quantitative, noninvasive tool for in vivo monitoring of burn wound and skin graft healing. J Biomed Opt. 2019; 24: 1-9. doi:10.1117/1.jbo.24.7.071615
- 22Bounds AD, Girkin JM. Early stage dental caries detection using near infrared spatial frequency domain imaging. Sci Rep. 2021; 11: 1-10. doi:10.1038/s41598-021-81872-7
- 23Zonios G, Bykowski J, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol. 2001; 117: 1452-1457. doi:10.1046/j.0022-202x.2001.01577.x
- 24Hamdy O, Mohammed HS. Investigating the transmission profiles of 808 nm laser through different regions of the rat's head. Lasers Med Sci. 2021; 36: 803-810. doi:10.1007/s10103-020-03098-9
- 25Al-juboori SI, Dondzillo A, Stubblefield EA, Felsen G, Lei TC, Klug A. Light scattering properties vary across different regions of the adult mouse brain. PLoS One. 2013; 8:e67626-1–9. doi:10.1371/journal.pone.0067626
- 26Wang LH, Wu HI. Biomedical Optics: Principles and Imaging. Wiley-Interscience; 2007.
- 27Hamdy O, Abdel-Salam Z, Abdel-Harith M. Discrimination between fresh, chilled, and frozen/thawed chicken based on its skin's spectrochemical and optical properties. Anal Methods. 2020; 12: 2093-2101. doi:10.1039/d0ay00324g
- 28Lin W, Zeng B, Cao Z, Chen X, Yang K, Xu M. Quantitative diagnosis of tissue microstructure with wide-field high spatial frequency domain imaging. Biomed Opt Express. 2018; 9: 2905-2916. doi:10.1364/boe.9.002905
- 29Sabino CP, Deana AM, Yoshimura TM, et al. The optical properties of mouse skin in the visible and near infrared spectral regions. J Photochem Photobiol B Biol. 2016; 160: 72-78. doi:10.1016/j.jphotobiol.2016.03.047
- 30Ullah H, Shehzad A, Batool Z, Nazir A. Diffuse wave spectroscopy for optical properties measurements of normal and coagulated chicken liver using ultrafast femtosecond wavelength range (390-435 nm). J Optoelectron Adv Mater. 2020; 22: 121-128.
- 31Boas DA, Pitris C, Ramanujam N. Handbook of Biomedical Optics. CRC Press; 2011.
10.1201/b10951 Google Scholar
- 32Markolf NH. Laser-Tissue Interactions: Fundamentals and Applications. Springer; 2007.
- 33Hamdy O, Solouma NH. Distant-detector versus integrating sphere measurements for estimating tissue optical parameters: a comparative experimental study. Optik. 2021; 247:167981. doi:10.1016/j.ijleo.2021.167981
- 34McClatchy DM, Rizzo EJ, Wells WA, et al. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging. Optica. 2016; 3: 613-621. doi:10.1364/optica.3.000613
- 35Bodenschatz N, Krauter P, Liemert A, Wiest J, Kienle A. Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging. Appl Optics. 2015; 54: 6725-6731. doi:10.1364/ao.54.006725
- 36Dai L, Luo Y, Fu X. Simple demodulation method for optical property extraction in spatial frequency domain imaging. Appl Optics. 2021; 60: 7878-7887. doi:10.1364/ao.430937
- 37Abdelazeem RM, Youssef D, El-Azab J, Hassab-Elnaby S, Agour M. Three-dimensional visualization of brain tumor progression based accurate segmentation via comparative holographic projection. PLoS One. 2020; 15: 1-24. doi:10.1371/journal.pone.0236835
- 38Abdelazeem RM, Youssef D, El-Azab J, Hassab-Elnaby S, Agour M. Holographic projection of brain magnetic resonance data based white and gray matter segmentation. Paper presented at: Biophotonics Congress Biomedical Optics; 2020: JW3A.23. 10.1364/translational.2020.jw3a.23
- 39Ibrahim DGA, Abdelazeem RM. Quantitative phase imaging by automatic phase shifting generated by phase-only spatial light modulator. Paper presented at Frontiers in Optics + Laser Science; 2021, 2022: JTh5A.104. 10.1364/fio.2021.jth5a.104
- 40Abdelazeem RM, Agour M. Optical inspection of single vision soft contact lenses based on an active adaptive wavefront sensor. Appl Optics. 2022; 61: 141-148. doi:10.1364/ao.441289
- 41Goodman JW. Introduction to Fourier optics. Roberts and Company; 2005.
- 42Poon T-C, Liu J-P. Introduction to Modern Digital Holography with Matlab. Cambridge University Press; 2014.
10.1017/CBO9781139061346 Google Scholar
- 43Wang L, Jacquesa SL, Zheng L. MCML-Monte-Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed. 1995; 47: 131-146. doi:10.1016/0169-2607(95)01640-F
- 44Hamdy O, Ismail T. Study of optical power variations in multi-layer human skin model for monitoring the light dose. Paper presented at: Novel Intelligent and Leading Emerging Sciences Conference; 2019: 21-24. 10.1109/NILES.2019.8909332
- 45Bhandari A, Hamre B, Frette Ø, Stamnes K, Stamnes JJ. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices. Opt Express. 2011; 19: 14549-14567. doi:10.1364/oe.19.014549
- 46Firdous S, Ikram M, Nawaz M, Aslam M. Measurement of an optical parameters: absorption scattering and auto-florescence of skin in vitro. Int J Cancer Res. 2004; 1: 10-15. doi:10.3923/ijcr.2005.10.15
10.3923/ijcr.2005.10.15 Google Scholar
- 47Hamdy O, El-Azab J, Al-Saeed TA, Hassan MF, Solouma NH. A method for medical diagnosis based on optical fluence rate distribution at tissue surface. Materials. 2017; 10: 1-13. doi:10.3390/ma10091104
- 48Hamdy O, Fathy M, Al-Saeed TA, El-Azab J, Solouma NH. Estimation of optical parameters and fluence rate distribution in biological tissues via a single integrating sphere optical setup. Optik. 2017; 140: 1004-1009. doi:10.1016/j.ijleo.2017.05.039
- 49Qin J, Lu R. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl Spectrosc. 2007; 61: 388-396. doi:10.1366/000370207780466190
- 50Bienvenue A, Jiménez-Flores R, Singh H. Rheological properties of concentrated skim milk: importance of soluble minerals in the changes in viscosity during storage. J Dairy Sci. 2003; 86: 3813-3821. doi:10.3168/jds.S0022-0302(03)73988-5
- 51Stocker S, Foschum F, Krauter P, et al. Broadband optical properties of milk. Appl Spectrosc. 2017; 71: 951-962. doi:10.1177/ToBeAssigned
- 52Bashkatov AN, Genina EA, Tuchin VV. Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci. 2011; 4: 9-38. doi:10.1142/S1793545811001319
- 53Nadeau KP, Rice TB, Durkin AJ, Tromberg BJ. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging. J Biomed Opt. 2015; 20:116005. doi:10.1117/1.jbo.20.11.116005
- 54Khalil OS, Yeh S, Lowery MG, et al. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin. J Biomed Opt. 2003; 8: 191-205. doi:10.1117/1.1559997
- 55Iorizzo TW, Jermain PR, Salomatina E, Muzikansky A, Yaroslavsky AN. Temperature induced changes in the optical properties of skin in vivo. Sci Rep. 2021; 11: 1-9. doi:10.1038/s41598-020-80254-9
- 56Hayward JE, Bruulsema JT, Patterson MS, Essenpreis M. In vivo temperature dependence of human skin optical properties in the NIR. Biomed Opt OSA Tech Dig. 1999;ATuA3-1–3.
- 57Jaywant S, Wilson B, Patterson M, et al. Temperature dependent changes in the optical absorption and scattering spectra of tissues. SPIE. 1882; 1993: 218-229. doi:10.1117/12.148080
10.1117/12.148080 Google Scholar
- 58Qilesiz IF, Welch AJ. Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta. Appl Optics. 1993; 32: 477-487. doi:10.1364/AO.32.000477
- 59Veenstra C, Kruitwagen S, Groener D, Petersen W, Steenbergen W, Bosschaart N. Quantification of total haemoglobin concentrations in human whole blood by spectroscopic visible-light optical coherence tomography. Sci Rep. 2019; 9: 1-8. doi:10.1038/s41598-019-51721-9
- 60Friebel M, Helfmann J, Netz U, Meinke M. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm. J Biomed Opt. 2009; 14:034001-1–6. doi:10.1117/1.3127200
- 61Mustari A, Kanie T, Kawauchi S, et al. In vivo evaluation of cerebral hemodynamics and tissue morphology in rats during changing fraction of inspired oxygen based on spectrocolorimetric imaging technique. Int J Mol Sci. 2018; 19: 491. doi:10.3390/ijms19020491