A hybrid feature fusion strategy for early fusion and majority voting for late fusion towards melanocytic skin lesion detection
Corresponding Author
Lokesh Singh
Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India
Correspondence
Lokesh Singh, Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India.
Email: [email protected]
Search for more papers by this authorRekh Ram Janghel
Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India
Search for more papers by this authorSatya Prakash Sahu
Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India
Search for more papers by this authorCorresponding Author
Lokesh Singh
Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India
Correspondence
Lokesh Singh, Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India.
Email: [email protected]
Search for more papers by this authorRekh Ram Janghel
Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India
Search for more papers by this authorSatya Prakash Sahu
Department of Information Technology, National Institute of Technology, Raipur, Chhattisgarh, India
Search for more papers by this authorAbstract
A computer-aided-diagnostic system for diagnosing melanoma often uses distinct kinds of features for characterizing the lesions. Extracting distinct features from melanocytic images represents the various characteristics of pigmented lesions. Concatenating such features distinguishes extracted feature's information effectively while eliminating the redundant information amid them, which aids in discriminating the cancerous and noncancerous lesions. This article proposes a framework comprising segmentation, feature extraction, feature fusion, and classification to differentiate benign lesions from melanoma. The proposed framework is four-fold: beginning with the extraction of ROI from an image, the SLICACO method is used for segmentation. Thereafter, ABCD rule-based global and local features are extracted for effective melanoma detection. Further, we develop a new hybrid feature fusion strategy, PCAFA, leveraging the benefits of principal component analysis and factor analysis. The method performs early fusion by combining all extracted features within an individual feature vector and fed to a learning model for the prediction. While late fusion is performed using majority voting by combining the outputs of machine learning models. After that, gradient tree boosting, support vector machine, and decision tree models are trained to utilize distinct features of skin lesions for their classification as benign or malignant. The effectiveness of the designed framework is validated on the ISIC2017 benchmark skin lesion dataset based on specificity, sensitivity, and accuracy. The generalizability of the designed framework is gauged by conducting a fair comparison with conventional methods. Evaluated results reveal the potential of the proposed fused feature-set in discriminating malignant and nonmalignant lesions with an accuracy of 96.8%.
CONFLICT OF INTEREST
All authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The dataset used in our experiment is publicly available.
REFERENCES
- 1Hameed A, Umer M, Hafeez U, et al. Skin lesion classification in dermoscopic images using stacked convolutional neural network. J Ambient Intell Humaniz Comput. 2021; 12: 1-15. doi:10.1007/s12652-021-03485-2
- 2Rahman Z, Hossain MS, Islam MR, Hasan MM, Hridhee RA. An approach for multiclass skin lesion classification based on ensemble learning. Inform Med Unlocked. 2021; 25: 1-9. doi:10.1016/j.imu.2021.100659
10.1016/j.imu.2021.100659 Google Scholar
- 3Cullell-Dalmau M, Noé S, Otero-Viñas M, Meić I, Manzo C. Convolutional neural network for skin lesion classification: understanding the fundamentals through hands-on learning. Front Med. 2021; 8(March): 1-8. doi:10.3389/fmed.2021.644327
- 4Sun Q, Huang C, Chen M, Xu H, Yang Y. Skin lesion classification using additional patient information. Biomed Res Int. 2021; 21: 1-6. doi:10.1155/2021/6673852
- 5Abhishek K, Kawahara J, Hamarneh G. Predicting the clinical management of skin lesions using deep learning. Sci Rep. 2021; 11(1): 1-14. doi:10.1038/s41598-021-87064-7
- 6Saravana Kumar AKNM, Hariprasath K, Tamilselvi S, Kaviyavarshini N. Detection of stages of melanoma using deep learning. Multimed Tools Appl. 2021; 80: 1-16. doi:10.1007/s11042-021-10572-1
- 7Ali ARH, Li J, Yang G. Automating the ABCD rule for melanoma detection: a survey. IEEE Access. 2020; 8: 83333-83346. doi:10.1109/ACCESS.2020.2991034
- 8Abbasi DPNR, Shaw HM, Rigel DS, et al. Early diagnosis of cutaneous melanoma revisiting the ABCD criteria. JAMA. 2004; 292(22): 2771-2776. doi:10.1001/jama.292.22.2771
- 9Higgins EM, Hall P. The application of the seven-point check-list in the assessment of benign pigmented lesions. Clin Exp Dermatol. 1992; 17(5): 313-315.
- 10Aldo Bono RM, Tomatis S, Bartoli C, Tragni G, Radaelli G, Maurichi A. The ABCD system of melanoma detection: a spectrophotometric analysis of the asymmetry, border, color, and dimension. Cancer. 1999; 85(1): 72-77. doi:10.1002/(SICI)1097-0142(19990101)85:1<72::AID-CNCR10>3.0.CO;2-Q
10.1002/(SICI)1097?0142(19990101)85:1<72::AID?CNCR10>3.0.CO;2?Q PubMed Web of Science® Google Scholar
- 11Stolz W. ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J Dermatol. 1994; 4: 521-527.
- 12Kavitha JC, Suruliandi A. Melanoma detection in dermoscopic images using global and local feature extraction. Int J Multimedia Ubiquitous Eng. 2017; 12(5): 19-28. doi:10.14257/ijmue.2017.12.5.02
10.14257/ijmue.2017.12.5.02 Google Scholar
- 13Akram T, Hafiz M, Lodhi J, et al. A multilevel features selection framework for skin lesion classification. HCIS. 2020; 10: 1-26.
- 14Barata C, Celebi ME, Marques JS. Melanoma detection algorithm based on feature fusion. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2015; pp. 2653-2656. doi: 10.1109/EMBC.2015.7318937
- 15Mahbod A, Schaefer G, Wang C, Ecker R, Ellinge I. Skin lesion classification using hybrid deep neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP; 2019; pp. 1229-1233, doi: 10.1109/ICASSP.2019.8683352
- 16Mojdeh Rastgoo FM, Garcia R, Morel O. Automatic differentiation of melanoma from dysplastic nevi. Comput Med Imaging Graph. 2015; 43: 44-52. doi:10.1016/j.compmedimag.2015.02.011
- 17Attique Khan M, Akram T, Sharif M, Javed K, Bukhari SAC. An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection. Neural Comput Appl. 2020; 32(20): 15929-15948. doi:10.1007/s00521-019-04514-0
- 18Abedinia O, Zareinejad M, Doranehgard MH, Fathi G, Ghadimi N. Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. J Clean Prod. 2019; 215: 878-889. doi:10.1016/j.jclepro.2019.01.085
- 19Saeedi M, Moradi M, Hosseini M, Emamifar A, Ghadimi N. Robust optimization based optimal chiller loading under cooling demand uncertainty. Appl Therm Eng. 2019; 148(March): 1081-1091. doi:10.1016/j.applthermaleng.2018.11.122
- 20Gao W, Darvishan A, Toghani M, Mohammadi M, Abedinia O, Ghadimi N. Different states of multi-block based forecast engine for price and load prediction. Int J Elect Power Energy Syst. 2019; 104: 423-435. doi:10.1016/j.ijepes.2018.07.014
- 21Ghadimi N, Akbarimajd A, Shayeghi H, Abedinia O. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy. 2018; 161: 130-142. doi:10.1016/j.energy.2018.07.088
- 22Khodaei H, Hajiali M, Darvishan A, Sepehr M, Ghadimi N. Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Appl Therm Eng. 2018; 137: 395-405. doi:10.1016/j.applthermaleng.2018.04.008
- 23Ravi VK, Narasimhan H. EfficientNet-based convolutional neural networks for tuberculosis classification. Advances in Artificial Intelligence, Computation, and Data Science Computational Biology. Springer; 2021: 227-244.
10.1007/978-3-030-69951-2_9 Google Scholar
- 24Ravi V, Narasimhan H, Chakraborty C, Pham TD. Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images. Multimedia Systems. 2021; 27: 1-15. doi:10.1007/s00530-021-00826-1
10.1007/s00530?021?00826?1 Google Scholar
- 25Singh L, Janghel RR, Sahu SP. SLICACO: an automated novel hybrid approach for dermatoscopic melanocytic skin lesion segmentation. Int J Imaging Syst Technol. 2021; 31: 1-17. doi:10.1002/ima.22591
- 26Dalila F, Zohra A, Reda K, Hocine C. Segmentation and classification of melanoma and benign skin lesions. Optik—Int J Light Electron Opt. 2017; 140: 749-761. doi:10.1016/j.ijleo.2017.04.084
10.1016/j.ijleo.2017.04.084 Google Scholar
- 27Fernández Alcón J, Calina C, Warner ten K et al. Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Sel Top Signal Process. 2009; 3(1): 14-25. doi:10.1109/JSTSP.2008.2011156
- 28Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973; 3: 610-621. doi:10.1109/TSMC.1973.4309314
10.1109/TSMC.1973.4309314 Google Scholar
- 29Situ N, Xiaojing Y, Ji C, Zouridakis G. Malignant melanoma detection by bag-of-features classification. Paper presented at: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2008; Vancouver, Canada, 3110-3113.
- 30Al-Amin M, Badrul M, Ronju M. Detection of cancerous and non-cancerous skin by using GLCM matrix and neural network classifier. Int J Comput Appl. 2015; 132(8): 44-49. doi:10.5120/ijca2015907513
10.5120/ijca2015907513 Google Scholar
- 31Kavitha JC, Suruliandi A. Texture and color feature extraction for classification of melanoma using SVM. Paper presented at: International Conference on Computing Technologies and Intelligent Data Engineering, ICCTIDE 2016; Kovilpatti, India, 1-6. doi: 10.1109/ICCTIDE.2016.7725347
- 32Khan AAMA, Akram T, Sharif M, et al. An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer. 2018; 18(1): 1-20. doi:10.1186/s12885-018-4465-8
- 33Svante Wold PG, Esbensen K. Principal component analysis. Chemom Intel lab Syst. 1987; 2(1–3): 37-52.
- 34Alavi M, Visentin DC, Thapa DK, Hunt GE, Watson R, Cleary M. Exploratory factor analysis and principal component analysis in clinical studies: which one should you use? J Adv Nurs. 2020; 76: 1886-1889. doi:10.1111/jan.14377
- 35Anna K. Factor models: The Foundations of Factor Analysis. [Master Thesis]. Central European University Department of Mathematics and its Applications; 2010, 1–60.
- 36Basto M, Pereira JM. An SPSS R-menu for ordinal factor analysis. J Stat Softw. 2012; 46(4): 1-29. doi:10.18637/jss.v046.i04
- 37Ruta D, Gabrys B. Classifier selection for majority voting. Information Fusion. 2005; 6(1): 63-81. doi:10.1016/j.inffus.2004.04.008
10.1016/j.inffus.2004.04.008 Google Scholar
- 38Sisodia D, Sisodia DS. Gradient boosting learning for fraudulent publisher detection in online advertising. Data Technol Appl. 2020; 55: 1-17. doi:10.1108/DTA-04-2020-0093
- 39Bahety A. Extension and evaluation of ID3–decision tree algorithm. Entropy (S). 2014; 2(1): 1-8. http://ssltest.cs.umd.edu/Grad/scholarlypapers/papers/Bahety.pdf
- 40Sisodia D, Sisodia DS. Data sampling strategies for click fraud detection using imbalanced user click data of online advertising: an empirical review. IETE Tech Rev. 2021; 38: 1-10. doi:10.1080/02564602.2021.1915892
- 41Sisodia D, Shrivastava SK, Jain RC. ISVM for face recognition. Paper presented at: Proceedings - 2010 International Conference on Computational Intelligence and Communication Networks, CICN; 26-28 Nov, 2010; Bhopal, India, 554-559. doi: 10.1109/CICN.2010.109
- 42Singh L, Janghel RR, Sahu SP. TrCSVM: a novel approach for the classification of melanoma skin cancer using transfer learning. Data Technol Appl. 2020; 55: 1-18. doi:10.1108/DTA-06-2020-0126
- 43Zhang Y, Yang Y. Cross-validation for selecting a model selection procedure. J Econom. 2015; 187(1): 95-112.
- 44Tharwat A. Classification assessment methods. Appl Comp Inform. 2020; 17: 1-14. doi:10.1016/j.aci.2018.08.003
10.1016/j.aci.2018.08.003 Google Scholar
- 45 Matplotlib 3.1.2 documentation. https://matplotlib.org/3.1.1/tutorials/index.html (Accessed March 23, 2020).
- 46 pandas—Python Data Analysis Library. https://pandas.pydata.org/ (Accessed Mar. 23, 2020).
- 47 scikit-learn: machine learning in Python—scikit-learn 0.22.2 documentation. https://scikit-learn.org/stable/ (Accessed March 23, 2020).
- 48 NumPy—NumPy. https://numpy.org/ (Accessed March 23, 2020).
- 49 An introduction to seaborn—seaborn 0.10.0 documentation. https://seaborn.pydata.org/introduction.html (Accessed March 23, 2020).
- 50 ISIC Challenge. https://challenge.isic-archive.com/landing/2017 (Accessed September 13, 2020).
- 51Sabouri P, Gholamhosseini H, Larsson T, Collins P. A cascade classifier for diagnosis of melanoma in clinical images. Paper presented at: International Conference of the IEEE Engineering in Medicine and Biology Society; EMBC, 2014; Chicago, IL, 6748-6751. doi: 10.1109/EMBC.2014.6945177
- 52Fujikoshi Y. Two-way ANOVA models with unbalanced data. Discrete Math. 1993; 116(1–3): 315-334. doi:10.1016/0012-365X(93)90410-U
- 53Mahbod A, Schaefer G, Ellinger I, Ecker R, Pitiot A, Wang C. Fusing fine-tuned deep features for skin lesion classification. Comput Med Imaging Graph. 2019; 71: 19-29. doi:10.1016/j.compmedimag.2018.10.007
- 54Saba T, Khan MA, Rehman A, Marie-Sainte SL. Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst. 2019; 43(9): 289. doi:10.1007/s10916-019-1413-3
- 55Bi L, Kim J, Ahn E, Kumar A, Feng D, Fulham M. Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 2019; 85: 78-89. doi:10.1016/j.patcog.2018.08.001
- 56Navarro F, Escudero-Viñolo M, Bescós J. Accurate segmentation and registration of skin lesion images to evaluate lesion change. IEEE J Biomed Health Inform. 2019; 23(2): 501-508. doi:10.1109/JBHI.2018.2825251
- 57Li Y, Shen L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors. 2018; 18(2): 556.
- 58Soudani A, Barhoumi W. An image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extraction. Expert Syst Appl. 2019; 118: 400-410. doi:10.1016/j.eswa.2018.10.029
- 59Liu L, Mou L, Zhu XX, Mandal M. Automatic skin lesion classification based on mid-level feature learning. Comput Med Imaging Graph. 2020; 84:101765. doi:10.1016/j.compmedimag.2020.101765