Helminth-derived molecules inhibit colitis-associated colon cancer development through NF-κB and STAT3 regulation
Blanca E. Callejas
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorMónica G. Mendoza-Rodríguez
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorOlga Villamar-Cruz
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorSandy Reyes-Martínez
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorCuauhtémoc Angel Sánchez-Barrera
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorMiriam Rodríguez-Sosa
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorNorma L. Delgado-Buenrostro
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorDiana Martínez-Saucedo
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorYolanda I. Chirino
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorSonia A. León-Cabrera
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorCarlos Pérez-Plasencia
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
Search for more papers by this authorFelipe Vaca-Paniagua
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorLuis E. Arias-Romero
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorCorresponding Author
Luis I. Terrazas
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Correspondence to: Luis I. Terrazas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tel.: +52-55-5623-1333, ext. 39773, E-mail: [email protected]Search for more papers by this authorBlanca E. Callejas
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorMónica G. Mendoza-Rodríguez
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorOlga Villamar-Cruz
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorSandy Reyes-Martínez
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorCuauhtémoc Angel Sánchez-Barrera
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorMiriam Rodríguez-Sosa
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorNorma L. Delgado-Buenrostro
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorDiana Martínez-Saucedo
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorYolanda I. Chirino
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorSonia A. León-Cabrera
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorCarlos Pérez-Plasencia
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
Search for more papers by this authorFelipe Vaca-Paniagua
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorLuis E. Arias-Romero
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Search for more papers by this authorCorresponding Author
Luis I. Terrazas
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
Correspondence to: Luis I. Terrazas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tel.: +52-55-5623-1333, ext. 39773, E-mail: [email protected]Search for more papers by this authorAbstract
Inflammation is currently considered a hallmark of cancer and plays a decisive role in different stages of tumorigenesis, including initiation, promotion, progression, metastasis and resistance to antitumor therapies. Colorectal cancer is a disease widely associated with local chronic inflammation. Additionally, extrinsic factors such as infection may beneficially or detrimentally alter cancer progression. Several reports have noted the ability of various parasitic infections to modulate cancer development, favoring tumor progression in many cases and inhibiting tumorigenesis in others. The aim of our study was to determine the effects of excreted/secreted products of the helminth Taenia crassiceps (TcES) as a treatment in a murine model of colitis-associated colon cancer (CAC). Here, we found that after inducing CAC, treatment with TcES was able to reduce inflammatory cytokines such as IL-1β, TNF-α, IL-33 and IL-17 and significantly attenuate colon tumorigenesis. This effect was associated with the inhibition of signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation. Furthermore, we determined that TcES interfered with LPS-induced NF-κB p65 activation in human colonic epithelial cell lines in a Raf-1 proto-oncogene-dependent manner. Moreover, in three-dimensional cultures, TcES promoted reorganization of the actin cytoskeleton, altering cell morphology and forming colonospheres, features associated with a low grade of aggressiveness. Our study demonstrates a remarkable effect of helminth-derived molecules on suppressing ongoing colorectal cancer by downregulating proinflammatory and protumorigenic signaling pathways.
Abstract
What's new?
Worm infections usually cause unwanted gastrointestinal diseases, but their effects on colorectal cancer development remain unclear. Here the authors demonstrate a notable anti-tumor effect of molecules derived from Taenia crassiceps (TcES), a tapeworm found in wolves. The secreted molecules downregulated proinflammatory and protumorigenic signaling, such as that mediated by STAT3, AKT and NF-kappaB, underscoring the role of inflammation in colorectal tumorigenesis and pointing to potential therapeutic implications of helminth-derived molecules.
Open Research
Data availability
The data will be made available upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ijc32626-sup-0001-FigureS1.docxWord 2007 document , 33.8 KB | Supplementary Fig 1 Cytokines at different times of development of the CAC. a) IL-1β, b) IL-10 c) IL-6 concentrations in supernatants of colon culture on days 26, 47, and 68 after AOM/DSS induction were measured by ELISA. The results are representative of four independent experiments and expressed as the mean ± SE *** P < 0.0001 ** P < 0.01 *P < 0.05. |
ijc32626-sup-0002-FigureS2.docxWord 2007 document , 338.6 KB | Supplementary Fig. 2 Cytokines in spleen and inflammatory monocytes in blood circulation a) TNF-α, b) IL-10 concentrations in spleen culture stimulated or not with α-CD3 after AOM/DSS induction were measured by ELISA c) Analysis strategy d) Representative flow cytometry plots from control mice, CAC mice and CAC + TcES mice gated on CD11b+ living cells isolated from the circulation. Percentage of e) CD11b+Ly6ChiCCR2+ cells and IMF of f) CCR2. Data are representative of four independent experiments. Values are mean ± SE *** P < 0.0001 ** P < 0.01 * P < 0.05. |
ijc32626-sup-0003-TableS1.docxWord 2007 document , 14.9 KB | Supplementary Table 1 Primer sequences for qPCR analysis. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.
- 2Van Der Kraak L. Colitis-associated colon cancer: is it in your genes? World J Gastroenterol 2015; 21: 11688–99.
- 3Colotta F, Allavena P, Sica A, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30: 1073–81.
- 4Grivennikov SI. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 2013; 35: 229–44.
- 5Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 2016; 7:1–14.
- 6Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. Int J Cancer 2009; 125: 2863–70.
- 7Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018; 18: 309–24.
- 8 Humans IWGotEoCRt. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 2012; 100: 1–441.
- 9Maizels RM. Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clin Microbiol Infect 2016; 22: 481–6.
- 10Pastille E, Frede A, McSorley HJ, et al. Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer. PLoS Pathog 2017; 13:e1006649.
- 11Callejas Blanca E, Martínez-Saucedo D, Terrazas Luis I. Parasites as negative regulators of cancer. Biosci Rep 2018; 38: BSR20180935.
- 12León-Cabrera S, Callejas BE, Ledesma-Soto Y, et al. Extraintestinal Helminth infection reduces the development of colitis-associated tumorigenesis. Int J Biol Sci 2014; 10: 948–56.
- 13Clapper ML, Cooper HS, Chang WC. Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta Pharmacol Sin 2007; 28: 1450–9.
- 14Mendoza-Rodriguez M, Arevalo Romero H, Fuentes-Panana EM, et al. IL-1beta induces up-regulation of BIRC3, a gene involved in chemoresistance to doxorubicin in breast cancer cells. Cancer Lett 2017; 390: 39–44.
- 15Arias-Romero LE, Villamar-Cruz O, Huang M, et al. Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res 2013; 73: 3671–82.
- 16Yuan J, Zhang F, Niu R. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep 2016; 5:1–10.
- 17Ormanns S, Neumann J, Horst D, et al. WNT signaling and distant metastasis in colon cancer through transcriptional activity of nuclear β-catenin depend on active PI3K signaling. Oncotarget 2014; 5: 2999–3011.
- 18Wegiel B, Bjartell A, Culig Z, et al. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int J Cancer 2007; 122: 1521–9.
- 19Wu J, Zhang H, Xu C, et al. TIPE2 functions as a metastasis suppressor via negatively regulating β-catenin through activating GSK3β in gastric cancer. Int J Oncol 2016; 48: 199–206.
- 20Mariani F. Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol 2014; 20: 9716–31.
- 21Jablonska J, Wu C-F, Andzinski L, et al. CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β: IFN-β regulated neutrophil recruitment. Int J Cancer 2014; 134: 1346–58.
- 22Knaapen AM, Gungor N, Schins RP, et al. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis 2006; 21: 225–36.
- 23Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer. Redox Biol 2018. https://doi.org/10.1016/j.redox.2018.101084. [Epub ahead of print].
- 24van Loon B, Markkanen E, Hubscher U. Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair 2010; 9: 604–16.
- 25Sumagin R, Robin AZ, Nusrat A, et al. Transmigrated neutrophils in the intestinal lumen engage ICAM-1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol 2014; 7: 905–15.
- 26Terrazas CA, Alcántara-Hernández M, Bonifaz L, et al. Helminth-excreted/secreted products are recognized by multiple receptors on DCs to block the TLR response and bias Th2 polarization in a cRAF dependent pathway. FASEB J 2013; 27: 4547–60.
- 27Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140: 883–99.
- 28Xu J, Ye Y, Zhang H, et al. Diagnostic and prognostic value of serum interleukin-6 in colorectal cancer. Medicine 2016; 95:e2502.
- 29Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26: 54–74.
- 30Becerra-Díaz M, Terrazas LI. Taenia crassiceps infection and its excreted/secreted products inhibit STAT1 activation in response to IFN-γ. Int J Parasitol 2014; 44: 613–23.
- 31Scheller J, Garbers C, Rose-John S. Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin Immunol 2014; 26: 2–12.
- 32Ferreira RC, Freitag DF, Cutler AJ, et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet 2013; 9:e1003444.
- 33Kim SM, Kwon O-J, Hong YK, et al. Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol Cancer Ther 2012; 11: 2254–64.
- 34Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15: 103–13.
- 35Kataoka K, Kim DJ, Carbajal S, et al. Stage-specific disruption of Stat3 demonstrates a direct requirement during both the initiation and promotion stages of mouse skin tumorigenesis. Carcinogenesis 2008; 29: 1108–14.
- 36Shinriki S, Jono H, Ota K, et al. Humanized anti-Interleukin-6 receptor antibody suppresses tumor angiogenesis and in vivo growth of human oral squamous cell carcinoma. Clin Cancer Res 2009; 15: 5426–34.
- 37Doan HQ, Bowen KA, Jackson LA, et al. Toll-like receptor 4 activation increases Akt phosphorylation in colon cancer cells. Anticancer Res 2009; 29: 2473–8.
- 38Lee G, Goretsky T, Managlia E, et al. Phosphoinositide 3-kinase signaling mediates β-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 2010; 139: 869–81.e9.
- 39Oguma K, Oshima H, Aoki M, et al. Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastric tumour cells. EMBO J 2008; 27: 1671–81.
- 40Keerthivasan S, Aghajani K, Dose M, et al. Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci Transl Med 2014; 6: 225ra28–8.
- 41Jiang Y-G, Luo Y, He D-l, et al. Role of Wnt/β-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1α: prostate cancer undergoes EMT via Wnt. Int J Urol 2007; 14: 1034–9.
- 42Shang K, Bai Y-P, Wang C, et al. Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One 2012; 7:e51848.
- 43Vainer B, Horn T, Nielsen OH. Colonic epithelial cell expression of ICAM-1 relates to loss of surface continuity: a comparative study of inflammatory bowel disease and colonic neoplasms. Scand J Gastroenterol 2006; 41: 318–25.
- 44Dinarello CA, van der Meer JWM. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 2013; 25: 469–84.
- 45Cătană C-S, Berindan Neagoe I, Cozma V, et al. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2015; 21: 5823–30.
- 46Chae W-J, Bothwell ALM. IL-17 and intestinal tumorigenesis. Drug Discovery Today: Disease Mechanisms 2011; 8: e79–83.
- 47Di Salvo E, Ventura-Spagnolo E, Casciaro M, et al. IL-33/IL-31 Axis: a potential inflammatory pathway. Mediators Inflamm 2018; 2018: 1–8.
- 48Scott IC, Majithiya JB, Sanden C, et al. Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Sci Rep 2018; 8: 3363.
- 49Numata T, Ito T, Maeda T, et al. IL-33 promotes ICAM-1 expression via NF-kB in murine mast cells. Allergol Int 2016; 65: 158–65.
- 50Gringhuis SI, den Dunnen J, Litjens M, et al. C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 2007; 26: 605–16.
- 51Gringhuis SI, Geijtenbeek TB. Carbohydrate signaling by C-type lectin DC-SIGN affects NF-kappaB activity. Methods Enzymol 2010; 480: 151–64.
- 52Pires BRB, Mencalha AL, Ferreira GM, et al. NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS One 2017; 12:e0169622.
- 53Perez-Yepez EA, Ayala-Sumuano J-T, Lezama R, et al. A novel β-catenin signaling pathway activated by IL-1β leads to the onset of epithelial–mesenchymal transition in breast cancer cells. Cancer Lett 2014; 354: 164–71.