Allelic loss of chromosomes 8 and 19 in MENX-associated rat pheochromocytoma
Alena Shyla
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorGabriele Hölzlwimmer
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorJulia Calzada-Wack
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorKarin Bink
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorOleg Tischenko
Institute of Radiation Protection, Medical Physics Group, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorMarie-Noëlle Guilly
CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, France
Search for more papers by this authorSylvie Chevillard
CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, France
Search for more papers by this authorElenore Samson
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorJochen Graw
Institute of Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorMichael J. Atkinson
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorCorresponding Author
Natalia S. Pellegata
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Fax: +49-89-3187-3360.
Helmholtz Zentrum München-German Research Center for Environment and Health, Institute of Pathology, Ingolstädter Landstraβe 1, D-85764 Neuherberg, GermanySearch for more papers by this authorAlena Shyla
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorGabriele Hölzlwimmer
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorJulia Calzada-Wack
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorKarin Bink
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorOleg Tischenko
Institute of Radiation Protection, Medical Physics Group, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorMarie-Noëlle Guilly
CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, France
Search for more papers by this authorSylvie Chevillard
CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, France
Search for more papers by this authorElenore Samson
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorJochen Graw
Institute of Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorMichael J. Atkinson
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Institute of Radiation Biology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Search for more papers by this authorCorresponding Author
Natalia S. Pellegata
Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environment and Health, Neuherberg, Germany
Fax: +49-89-3187-3360.
Helmholtz Zentrum München-German Research Center for Environment and Health, Institute of Pathology, Ingolstädter Landstraβe 1, D-85764 Neuherberg, GermanySearch for more papers by this authorAbstract
Pheochromocytomas are neoplasias of neural crest origin that arise from the chromaffin cells of the adrenal medulla. Pheochromocytomas arise with complete penetrance in rats homozygous for a germ-line frameshift mutation of Cdkn1b, encoding the cell cycle inhibitor p27KIP1 (MENX syndrome). We performed a genome-wide scan for allelic imbalance comparing 20 rat pheochromocytoma DNAs with normal rat DNA to better understand the pathobiology of the tumors and to correlate the findings with human pheochromocytoma. We identified allelic imbalance (AI) at candidate regions on rat chromosomes 8 and 19. Interestingly, the regions often lost in rat tumors are syntenic to regions involved in human pheochromocytomas. Fluorescence in situ hybridization analysis further validated the AI data. Sdhd and Rassf1a were analyzed in detail as they map to regions of AI on chromosome 8 and their homologues are implicated in human pheochromocytoma: we found no genetic mutations nor decreased expression. We also analyzed additional candidate genes, that is, rat homologues of genes predisposing to human pheochromocytoma and known tumor-suppressor genes, but we found no AI. In contrast, we observed frequent overexpression of Cdkn2a and Cdkn2c, encoding the cell cycle inhibitors p16INK4a and p18INK4c, respectively. The relative small number of allelic changes we found in rat pheochromocytoma might be related to their nonmalignant status and losses at chromosomes 8 and 19 are events that precede malignancy. Because of the high concordance of affected loci between rat and human tumors, studies of the MENX-associated pheochromocytomas should facilitate the identification of novel candidate genes implicated in their human counterpart.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
IJC_24925_sm_suppfig1.tif6 MB | Supporting Figure 1 Real-time RT-PCR shows no change in the expression of Sdhd and Rassf1a in adrenal glands of MENX-affected and control rats. (a) The average level of Sdhd mRNA in normal medullary tissue of adrenal glands of wild-type animals (n = 4) was arbitrarily set to 1 (Controls). Values are the mean of two experiments ± standard deviation. “MENX-PCs” corresponds to the mean expression value of Sdhd in all the various pheochromocytoma samples. There is no significant difference in relative amount of mRNA between the analysed pheochromocytoma cases and the control group (p = 0.33; two-sided t-test). (b) The average level of Rassf1a mRNA in pheochromocytoma samples and normal medullary tissue was estimated as reported in (a). There is no significant difference in relative amount of mRNA between the analysed pheochromocytoma cases and the control group (p = 0.79; two-sided t-test). Cases PC13 and PC20 marked in red both have an allelic imbalance on chromosome 8 where Sdhd maps to 8q23 and Rassf1a maps to 8q32. |
IJC_24925_sm_suppfig2.tif503.6 KB | Supporting Figure 2 Real-time RT-PCR shows significant increased expression of the tyrosine hydroxylase (Th) gene in macrodissected adrenomedullary tissue (med) compared to adrenocortical tissue (cor). The level of Th mRNA in normal adrenomedullary tissue of wild-type animals (n=5; med 1-5) is shown in blue and in a pooled mRNA derived from 3 independent adrenocortical tissue samples is shown in red (cor). Values are the mean of two experiments ± standard deviation. |
IJC_24925_sm_suppinfo.doc23.5 KB | Supporting Information. |
IJC_24925_sm_supptables.doc8.8 MB | Supporting Tables. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Dahia PL. Evolving concepts in pheochromocytoma and paraganglioma. Curr Opin Oncol 2006; 18: 1–8.
- 2 Gimenez-Roqueplo AP. New advances in the genetics of pheochromocytoma and paraganglioma syndromes. Ann NY Acad Sci 2006; 1073: 112–21.
- 3 Mannelli M, Simi L, Gagliano MS, Opocher G, Ercolino T, Becherini L, Parenti G. Genetics and biology of pheochromocytoma. Exp Clin Endocrinol Diabetes 2007; 115: 160–5.
- 4 Dahia PL, Hao K, Rogus J, Colin C, Pujana MA, Ross K, Magoffin D, Aronin N, Cascon A, Hayashida CY, Li C, Toledo SP, et al. Novel pheochromocytoma susceptibility loci identified by integrative genomics. Cancer Res 2005; 65: 9651–8.
- 5 Opocher G, Schiavi F, Iacobone M, Toniato A, Sattarova S, Erlic Z, Martella M, Mian C, Merante-Boschin I, Zambonin L, De Lazzari P, Murgia A, et al. Familial nonsyndromic pheochromocytoma. Ann NY Acad Sci 2006; 1073: 149–55.
- 6 Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001; 69: 49–54.
- 7 Koch CA, Vortmeyer AO, Zhuang Z, Brouwers FM, Pacak K. New insights into the genetics of familial chromaffin cell tumors. Ann NY Acad Sci 2002; 970: 11–28.
- 8 Bausch B, Koschker AC, Fassnacht M, Stoevesandt J, Hoffmann MM, Eng C, Allolio B, Neumann HP. Comprehensive mutation scanning of NF1 in apparently sporadic cases of pheochromocytoma. J Clin Endocrinol Metab 2006; 91: 3478–81.
- 9 Fritz A, Walch A, Piotrowska K, Rosemann M, Schaffer E, Weber K, Timper A, Wildner G, Graw J, Hofler H, Atkinson MJ. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res 2002; 62: 3048–51.
- 10 Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, Fend F, Graw J, Atkinson MJ. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006; 103: 15558–63.
- 11 Pellegata NS, Quintanilla-Martinez L, Keller G, Liyanarachchi S, Hofler H, Atkinson MJ, Fend F. Human pheochromocytomas show reduced p27Kip1 expression that is not associated with somatic gene mutations and rarely with deletions. Virchows Arch 2007; 451: 37–46.
- 12 Franklin DS, Godfrey VL, O'Brien DA, Deng C, Xiong Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20: 6147–58.
- 13 You MJ, Castrillon DH, Bastian BC, O'Hagan RC, Bosenberg MW, Parsons R, Chin L, DePinho RA. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci USA 2002; 99: 1455–60.
- 14 Dammann R, Schagdarsurengin U, Seidel C, Trumpler C, Hoang-Vu C, Gimm O, Dralle H, Pfeifer GP, Brauckhoff M. Frequent promoter methylation of tumor-related genes in sporadic and men2-associated pheochromocytomas. Exp Clin Endocrinol Diabetes 2005; 113: 1–7.
- 15 Rosemann M, Kuosaite V, Nathrath M, Strom TM, Quintanilla-Martinez L, Richter T, Imai K, Atkinson MJ. Allelic imbalance at intragenic markers of Tbx18 is a hallmark of murine osteosarcoma. Carcinogenesis 2003; 24: 371–6.
- 16 Canzian F, Salovaara R, Hemminki A, Kristo P, Chadwick RB, Aaltonen LA, de la Chapelle A. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res 1996; 56: 3331–7.
- 17 Opocher G, Schiavi F, Vettori A, Pampinella F, Vitiello L, Calderan A, Vianello B, Murgia A, Martella M, Taccaliti A, Mantero F, Mostacciuolo ML. Fine analysis of the short arm of chromosome 1 in sporadic and familial pheochromocytoma. Clin Endocrinol (Oxf) 2003; 59: 707–15.
- 18 Eng C, Kiuru M, Fernandez MJ, Aaltonen LA. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 2003; 3: 193–202.
- 19 Pan ZG, Kashuba VI, Liu XQ, Shao JY, Zhang RH, Jiang JH, Guo C, Zabarovsky E, Ernberg I, Zeng YX. High frequency somatic mutations in RASSF1A in nasopharyngeal carcinoma. Cancer Biol Ther 2005; 4: 1116–22.
- 20 Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12: 2899–911.
- 21 Muscarella P, Bloomston M, Brewer AR, Mahajan A, Frankel WL, Ellison EC, Farrar WB, Weghorst CM, Li J. Expression of the p16INK4A/Cdkn2a gene is prevalently downregulated in human pheochromocytoma tumor specimens. Gene Expr 2008; 14: 207–16.
- 22 Cascon A, Ruiz-Llorente S, Rodriguez-Perales S, Honrado E, Martinez-Ramirez A, Leton R, Montero-Conde C, Benitez J, Dopazo J, Cigudosa JC, Robledo M. A novel candidate region linked to development of both pheochromocytoma and head/neck paraganglioma. Genes Chromosomes Cancer 2005; 42: 260–8.
- 23 Mulligan LM, Gardner E, Smith BA, Mathew CG, Ponder BA. Genetic events in tumour initiation and progression in multiple endocrine neoplasia type 2. Genes Chromosomes Cancer 1993; 6: 166–77.
- 24 Dannenberg H, Speel EJ, Zhao J, Saremaslani P, van Der Harst E, Roth J, Heitz PU, Bonjer HJ, Dinjens WN, Mooi WJ, Komminoth P, de Krijger RR. Losses of chromosomes 1p and 3q are early genetic events in the development of sporadic pheochromocytomas. Am J Pathol 2000; 157: 353–9.
- 25 Edstrom E, Mahlamaki E, Nord B, Kjellman M, Karhu R, Hoog A, Goncharov N, Teh BT, Backdahl M, Larsson C. Comparative genomic hybridization reveals frequent losses of chromosomes 1p and 3q in pheochromocytomas and abdominal paragangliomas, suggesting a common genetic etiology. Am J Pathol 2000; 156: 651–9.
- 26 Lui WO, Chen J, Glasker S, Bender BU, Madura C, Khoo SK, Kort E, Larsson C, Neumann HP, Teh BT. Selective loss of chromosome 11 in pheochromocytomas associated with the VHL syndrome. Oncogene 2002; 21: 1117–22.
- 27 Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO. Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 2006; 45: 527–35.
- 28
Braungart E, Schumacher C, Hartmann E, Nekarda H, Becker KF, Hofler H, Atkinson MJ.
Functional loss of E-cadherin and cadherin-11 alleles on chromosome 16q22 in colonic cancer.
J Pathol
1999;
187:
530–4.
10.1002/(SICI)1096-9896(199904)187:5<530::AID-PATH293>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 29
Sato M, Mori Y, Sakurada A, Fukushige S, Ishikawa Y, Tsuchiya E, Saito Y, Nukiwa T, Fujimura S, Horii A.
Identification of a 910-kb region of common allelic loss in chromosome bands 16q24.1-q24.2 in human lung cancer.
Genes Chromosomes Cancer
1998;
22:
1–8.
10.1002/(SICI)1098-2264(199805)22:1<1::AID-GCC1>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 30 Gratias S, Rieder H, Ullmann R, Klein-Hitpass L, Schneider S, Boloni R, Kappler M, Lohmann DR. Allelic loss in a minimal region on chromosome 16q24 is associated with vitreous seeding of retinoblastoma. Cancer Res 2007; 67: 408–16.
- 31 Kitamura Y, Shimizu K, Tanaka S, Ito K, Emi M. Association of allelic loss on 1q, 4p, 7q, 9p, 9q, and 16q with postoperative death in papillary thyroid carcinoma. Clin Cancer Res 2000; 6: 1819–25.
- 32
Kitamura Y, Shimizu K, Tanaka S, Ito K, Emi M.
Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p, 11, 17, 19p, and 22q.
Genes Chromosomes Cancer
2000;
27:
244–51.
10.1002/(SICI)1098-2264(200003)27:3<244::AID-GCC4>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 33 Zhang LH, Qin LX, Ma ZC, Ye SL, Liu YK, Ye QH, Wu X, Huang W, Tang ZY. Allelic imbalance regions on chromosomes 8p, 17p and 19p related to metastasis of hepatocellular carcinoma: comparison between matched primary and metastatic lesions in 22 patients by genome-wide microsatellite analysis. J Cancer Res Clin Oncol 2003; 129: 279–86.
- 34 Lasko D, Cavenee W, Nordenskjold M. Loss of constitutional heterozygosity in human cancer. Annu Rev Genet 1991; 25: 281–314.
- 35 Astuti D, Douglas F, Lennard TW, Aligianis IA, Woodward ER, Evans DG, Eng C, Latif F, Maher ER. Germline SDHD mutation in familial phaeochromocytoma. Lancet 2001; 357: 1181–2.
- 36 Gimenez-Roqueplo AP, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P, Rotig A, Jeunemaitre X. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 2001; 69: 1186–97.
- 37 Novosel A, Heger A, Lohse P, Schmidt H. Multiple pheochromocytomas and paragangliomas in a young patient carrying a SDHD gene mutation. Eur J Pediatr 2004; 163: 701–3.
- 38 Gimm O, Armanios M, Dziema H, Neumann HP, Eng C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res 2000; 60: 6822–5.
- 39 Cascon A, Ruiz-Llorente S, Cebrian A, Telleria D, Rivero JC, Diez JJ, Lopez-Ibarra PJ, Jaunsolo MA, Benitez J, Robledo M. Identification of novel SDHD mutations in patients with phaeochromocytoma and/or paraganglioma. Eur J Hum Genet 2002; 10: 457–61.
- 40 Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002; 346: 1459–66.
- 41 Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M, Buchta M, Franke G, Klisch J, Bley TA, Hoegerle S, Boedeker CC, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004; 292: 943–51.
- 42 Korpershoek E, Van Nederveen FH, Dannenberg H, Petri BJ, Komminoth P, Perren A, Lenders JW, Verhofstad AA, De Herder WW, De Krijger RR, Dinjens WN. Genetic analyses of apparently sporadic pheochromocytomas: the Rotterdam experience. Ann NY Acad Sci 2006; 1073: 138–48.
- 43 Astuti D, Agathanggelou A, Honorio S, Dallol A, Martinsson T, Kogner P, Cummins C, Neumann HP, Voutilainen R, Dahia P, Eng C, Maher ER, et al. RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene 2001; 20: 7573–7.
- 44 Dannenberg H, Komminoth P, Dinjens WN, Speel EJ, de Krijger RR. Molecular genetic alterations in adrenal and extra-adrenal pheochromocytomas and paragangliomas. Endocr Pathol 2003; 14: 329–50.
- 45 Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 2005; 5: 857–66.
- 46 Mannelli M, Ercolino T, Giache V, Simi L, Cirami C, Parenti G. Genetic screening for pheochromocytoma: should SDHC gene analysis be included? J Med Genet 2007; 44: 586–7.
- 47 Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, Chamontin B, Delemer B, Giraud S, Murat A, Niccoli-Sire P, Richard S, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005; 23: 8812–8.
- 48 van Veelen W, Klompmaker R, Gloerich M, van Gasteren CJ, Kalkhoven E, Berger R, Lips CJ, Medema RH, Höppener JW, Acton DS. P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer 2009; 124: 339–45.
- 49 Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–12.
- 50 Tessema M, Lehmann U, Kreipe H. Cell cycle and no end. Virchows Arch 2004; 444: 313–23.