Hospicells derived from ovarian cancer stroma inhibit T-cell immune responses
Ludovic Martinet
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Search for more papers by this authorRémy Poupot
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Search for more papers by this authorPejman Mirshahi
UMRS 872 INSERM, Université Pierre et Marie Curie-Paris 6 and Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 Rue de l'Ecole de Médecine, Paris, France
Search for more papers by this authorArash Rafii
Department of Genetic Medicine and Obstetrics and Gynecology, WCMC-Qatar, Doha, Qatar
Search for more papers by this authorJean-Jacques Fournié
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Search for more papers by this authorMassoud Mirshahi
UMRS 872 INSERM, Université Pierre et Marie Curie-Paris 6 and Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 Rue de l'Ecole de Médecine, Paris, France
Search for more papers by this authorCorresponding Author
Mary Poupot
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Fax: +33-562-744558
INSERM 563 Centre de Physiopathologie de Toulouse-Purpan, CHU Purpan, BP3048, 31024 Toulouse Cedex, FranceSearch for more papers by this authorLudovic Martinet
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Search for more papers by this authorRémy Poupot
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Search for more papers by this authorPejman Mirshahi
UMRS 872 INSERM, Université Pierre et Marie Curie-Paris 6 and Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 Rue de l'Ecole de Médecine, Paris, France
Search for more papers by this authorArash Rafii
Department of Genetic Medicine and Obstetrics and Gynecology, WCMC-Qatar, Doha, Qatar
Search for more papers by this authorJean-Jacques Fournié
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Search for more papers by this authorMassoud Mirshahi
UMRS 872 INSERM, Université Pierre et Marie Curie-Paris 6 and Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 Rue de l'Ecole de Médecine, Paris, France
Search for more papers by this authorCorresponding Author
Mary Poupot
INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan and Université Paul-Sabatier, Toulouse, France
Fax: +33-562-744558
INSERM 563 Centre de Physiopathologie de Toulouse-Purpan, CHU Purpan, BP3048, 31024 Toulouse Cedex, FranceSearch for more papers by this authorAbstract
With metastatic disease at diagnosis for 70% of patients, ovarian cancer represents the most lethal gynecological malignancy. Ovarian carcinomas are aggressive malignancies that can evade immune surveillance and frequently develop into metastases. The tumor microenvironment is decisive for preventing immune attack but, in the case of ovarian carcinoma, the mechanisms are unclear. We recently isolated a novel type of stromal cell from the ascitis of patients with ovarian carcinoma that interacts with epithelial ovarian cancers conferring them chemoresistance. These cells, called Hospicells, have the cell surface markers CD9, CD10, CD29, CD146 and CD166. Here, we investigated whether Hospicells also have immunomodulatory functions that might interfere with immunity to cancer. We report that Hospicells inhibit the proliferation of human CD4+, CD8+ and Vγ9Vδ2 T cells in vitro and the production of cytokines by these immune cells. The immunosuppression of CD4+ T cells is independent of direct contact with the Hospicells and is mainly due to nitric oxide produced by the inducible nitric oxide synthase and to products of the tryptophan degradation by indoleamine 2,3-dioxygenase. We proposed that Hospicells in the microenvironment of the tumor mediate immunosuppression of T cells and thus allow ovarian cancers to evade immune surveillance. Targeting of Hospicells could be an alternative to strong chemotherapy through the recovery of immune responses against tumor cells.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
IJC_24881_sm_supfig1.tif133.3 KB | Supplementary Figure 1 |
IJC_24881_sm_supfig2.tif52.2 KB | Supplementary Figure 2 |
IJC_24881_sm_supfig3.tif54 KB | Supplementary Figure 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Bhoola S, Hoskins WJ. Diagnosis and management of epithelial ovarian cancer. Obstet Gynecol 2006; 107: 1399–410.
- 2 Pfisterer J, Ledermann JA. Management of platinum-sensitive recurrent ovarian cancer. Semin Oncol 2006; 33: S12–16.
- 3 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
- 4 Sako A, Kitayama J, Shida D, Suzuki R, Sakai T, Ohta H, Nagawa H. Lysophosphatidic acid (LPA)-induced vascular endothelial growth factor (VEGF) by mesothelial cells and quantification of host-derived VEGF in malignant ascites. J Surg Res 2006; 130: 94–101.
- 5 Jayne DG, Perry SL, Morrison E, Farmery SM, Guillou PJ. Activated mesothelial cells produce heparin-binding growth factors: implications for tumour metastases. Br J Cancer 2000; 82: 1233–8.
- 6 Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 137–48.
- 7 Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960–4.
- 8 Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003; 348: 203–13.
- 9 Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 18538–43.
- 10 Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008; 26: 995–1005.
- 11 Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–74.
- 12 Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.
- 13 Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16: 53–65.
- 14 Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4: 941–52.
- 15 Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4: 71–8.
- 16 Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, Katsaros D, O'Brien-Jenkins A, Gimotty PA, Coukos G. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 2008; 14: 28–36.
- 17 Rafii A, Mirshahi P, Poupot M, Faussat AM, Simon A, Ducros E, Mery E, Couderc B, Lis R, Capdet J, Bergalet J, Querleu D, et al. Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 2008; 3: e3894.
- 18 Martinet L, Fleury-Cappellesso S, Gadelorge M, Dietrich G, Bourin P, Fournie JJ, Poupot R. A regulatory cross-talk between Vgamma9Vdelta2 T lymphocytes and mesenchymal stem cells. Eur J Immunol 2009; 39: 752–62.
- 19 Espinosa E, Tabiasco J, Hudrisier D, Fournie JJ. Synaptic transfer by human gamma delta T cells stimulated with soluble or cellular antigens. J Immunol 2002; 168: 6336–43.
- 20 Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC. Regulation of cutaneous malignancy by gammadelta T cells. Science 2001; 294: 605–9.
- 21 Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197: 163–8.
- 22 Bonneville M, Fournie JJ. Sensing cell stress and transformation through Vgamma9Vdelta2 T cell-mediated recognition of the isoprenoid pathway metabolites. Microbes Infect 2005; 7: 503–9.
- 23 Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993; 11: 191–212.
- 24 Groux H, Bigler M, de Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996; 184: 19–29.
- 25 Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267–96.
- 26 Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 2002; 168: 689–95.
- 27 Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998; 160: 5729–34.
- 28 Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006; 36: 2566–73.
- 29 Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25: 2739–49.
- 30 Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–18.
- 31 Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–63.
- 32 Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006; 5: 755–66.
- 33 Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726–36.
- 34 Hall B, Andreeff M, Marini F. The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handbk Exp Pharmacol 2007; 180: 263–83.
- 35 Cao H, Xu W, Qian H, Zhu W, Yan Y, Zhou H, Zhang X, Xu X, Li J, Chen Z, Xu X. Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett 2008; 274: 61–71.
- 36 Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989; 8: 98–101.
- 37 Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–9.
- 38 Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 2005; 65: 5211–20.
- 39 Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005; 202: 1075–85.
- 40 Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, Salvestrini V, Bonanno G, Rutella S, Durelli I, Horenstein AL, Fiore F, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood 2007; 109: 2871–7.
- 41 Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050–9.