Pseudoexon exclusion by antisense therapy in methylmalonic aciduria (MMAuria)†
B. Pérez
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
B. Pérez and A. Rincón contributed equally to this work.
Search for more papers by this authorA. Rincón
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
B. Pérez and A. Rincón contributed equally to this work.
Search for more papers by this authorA. Jorge-Finnigan
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorE. Richard
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorB. Merinero
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorCorresponding Author
M. Ugarte
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Centro de Biología Molecular “Severo Ochoa” CSIC-UAM, C/Nicolás Cabrera No. 1, Universidad Autónoma de Madrid, 28049 Madrid, SpainSearch for more papers by this authorL.R. Desviat
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorB. Pérez
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
B. Pérez and A. Rincón contributed equally to this work.
Search for more papers by this authorA. Rincón
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
B. Pérez and A. Rincón contributed equally to this work.
Search for more papers by this authorA. Jorge-Finnigan
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorE. Richard
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorB. Merinero
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorCorresponding Author
M. Ugarte
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Centro de Biología Molecular “Severo Ochoa” CSIC-UAM, C/Nicolás Cabrera No. 1, Universidad Autónoma de Madrid, 28049 Madrid, SpainSearch for more papers by this authorL.R. Desviat
Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid (UAM)–Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Search for more papers by this authorCommunicated by David S. Rosenblatt
Abstract
Development of pseudoexon exclusion therapies by antisense modification of pre-mRNA splicing represents a type of personalized genetic medicine. Here we present the cellular antisense therapy and the cell-based splicing assays to investigate the effect of two novel deep intronic changes c.1957–898A>G and c.1957–920C>A identified in the methylmalonyl–coenzyme A (CoA) mutase (MUT) gene. The results show that the nucleotide change c.1957–898A>G is a pathological mutation activating pseudoexon insertion and that antisense morpholino oligonucleotide (AMO) treatment in patient fibroblasts leads to recovery of MUT activity to levels 25 to 100% of control range. On the contrary, the change c.1957–920C>A, identified in two fibroblasts cell lines in cis with c.1885A>G (p.R629G) or c.458T>A (p.D153V), appears to be a rare variant of uncertain clinical significance. The functional analysis of c.1885A>G and c.458T>A indicate that they are the disease-causing mutations in these two patients. The results presented here highlight the necessity of scanning the described intronic region for mutations in MUT-affected patients, followed by functional analyses to demonstrate the pathogenicity of the identified changes, and extend previous work of the applicability of the antisense approach in methylmalonic aciduria (MMAuria) for a novel intronic mutation. Hum Mutat 30:1–7, 2009. © 2009 Wiley-Liss, Inc.
References
- Aartsma-Rus A, van Ommen GJ. 2007. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13: 1609–1624.
- Aartsma-Rus A, van Vliet L, Hirschi M, Janson AA, Heemskerk H, de Winter CL, de Kimpe S, van Deutekom JC, t Hoen PA, van Ommen GJ. 2009. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 17: 548–553.
- Acquaviva C, Benoist JF, Callebaut I, Guffon N, Ogier de Baulny H, Touati G, Aydin A, Porquet D, Elion J. 2001. N219Y, a new frequent mutation among mut(degree) forms of methylmalonic acidemia in Caucasian patients. Eur J Hum Genet 9: 577–582.
- Buratti E, Dhir A, Lewandowska MA, Baralle FE. 2007. RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events. Nucleic Acids Res 35: 4369–4383.
- Cartegni L, Chew SL, Krainer AR. 2002. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3: 285–298.
- Davis RL, Homer VM, George PM, Brennan SO. 2009. A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment. Hum Mutat 30: 221–227.
- Friedman KJ, Kole J, Cohn JA, Knowles MR, Silverman LM, Kole R. 1999. Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 274: 36193–36199.
- Graham IR, Hill VJ, Manoharan M, Inamati GB, Dickson G. 2004. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays. J Gene Med 6: 1149–1158.
- Gurvich OL, Tuohy TM, Howard MT, Finkel RS, Medne L, Anderson CB, Weiss RB, Wilton SD, Flanigan KM. 2008. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Ann Neurol 63: 81–89.
- Knebelmann B, Forestier L, Drouot L, Quinones S, Chuet C, Benessy F, Saus J, Antignac C. 1995. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet 4: 675–679.
- Kralovicova J, Vorechovsky I. 2007. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 35: 6399–6413.
- Lacerra G, Sierakowska H, Carestia C, Fucharoen S, Summerton J, Weller D, Kole R. 2000. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA 97: 9591–9596.
- Li YF, Morcos PA. 2008. Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo. Bioconjug Chem 19: 1464–1470.
- Madsen EC, Morcos PA, Mendelsohn BA, Gitlin JD. 2008. In vivo correction of a Menkes disease model using antisense oligonucleotides. Proc Natl Acad Sci USA 105: 3909–3914.
- Martinez MA, Rincon A, Desviat LR, Merinero B, Ugarte M, Perez B. 2005. Genetic analysis of three genes causing isolated methylmalonic acidemia: identification of 21 novel allelic variants. Mol Genet Metab 84: 317–325.
- Merinero B, Pérez B, Pérez-Cerdá C, Rincón A, Desviat LR, Martínez MA, Sala PR, García MJ, Aldamiz-Echevarría L, Campos J, Cornejo V, Del Toro M, Mahfoud A, Martínez-Pardo M, Parini R, Pedrón C, Peña-Quintana L, Pérez M, Pourfarzam M, Ugarte M. 2008. Methylmalonic acidaemia: examination of genotype and biochemical data in 32 patients belonging to mut, cblA or cblB complementation group. J Inherit Metab Dis 31: 55–66.
- Metherell LA, Akker SA, Munroe PB, Rose SJ, Caulfield M, Savage MO, Chew SL, Clark AJ. 2001. Pseudoexon activation as a novel mechanism for disease resulting in atypical growth-hormone insensitivity. Am J Hum Genet 69: 641–646.
- Miyazaki T, Ohura T, Kobayashi M, Shigematsu Y, Yamaguchi S, Suzuki Y, Hata I, Aoki Y, Yang X, Minjares C, Haruta I, Uto H, Ito Y, Müller U. 2001. Fatal propionic acidemia in mice lacking propionyl-CoA carboxylase and its rescue by postnatal, liver-specific supplementation via a transgene. J Biol Chem 276: 35995–35999.
- Perez-Cerda C, Merinero B, Sanz P, Jimenez A, Garcia MJ, Urbon A, Diaz Recasens J, Ramos C, Ayuso C, Ugarte M. 1989. Successful first trimester diagnosis in a pregnancy at risk for propionic acidaemia. J Inherit Metab Dis 12(Suppl 2): 274–276.
- Perez B, Desviat LR, Rodriguez-Pombo P, Clavero S, Navarrete R, Perez-Cerda C, Ugarte M. 2003. Propionic acidemia: identification of twenty-four novel mutations in Europe and North America. Mol Genet Metab 78: 59–67.
- Pros E, Gomez C, Martin T, Fabregas P, Serra E, Lazaro C. 2008. Nature and mRNA effect of 282 different NF1 point mutations: focus on splicing alterations. Hum Mutat 29: E173–E193.
- Pros E, Fernandez-Rodriguez J, Canet B, Benito L, Sanchez A, Benavides A, Ramos FJ, Lopez-Ariztegui MA, Capella G, Blanco I, Serra E, Lázaro C. 2009. Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum Mutat 30: 454–462.
- Rincon A, Aguado C, Desviat LR, Sanchez-Alcudia R, Ugarte M, Perez B. 2007. Propionic and methylmalonic acidemia: antisense therapeutics for intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet 81: 1262–1270.
- Roca X, Sachidanandam R, Krainer AR. 2005. Determinants of the inherent strength of human 5′ splice sites. RNA 11: 683–698.
- Shapiro MB, Senapathy P. 1987. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15: 7155–7174.
- Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, Ast G. 2004. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol Cell 14: 221–231.
- Sorek R. 2007. The birth of new exons: mechanisms and evolutionary consequences. RNA 13: 1603–1608.
- Sun H, Chasin LA. 2000. Multiple splicing defects in an intronic false exon. Mol Cell Biol 20: 6414–6425.
- Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, Hogan EL, Boustany RM, Vance JM, Nance MA, Pericak-Vance MA, Marchuk DA. 2001. Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet 68: 1077–1085.
- Takeshima Y, Yagi M, Wada H, Ishibashi K, Nishiyama A, Kakumoto M, Sakaeda T, Saura R, Okumura K, Matsuo M. 2006. Intravenous infusion of an antisense oligonucleotide results in exon skipping in muscle dystrophin mRNA of Duchenne muscular dystrophy. Pediatr Res 59: 690–694.
- Tazi J, Bakkour N, Stamm S. 2009. Alternative splicing and disease. Biochim Biophys Acta 1792: 14–26.
- Thierry AR, Abes S, Resina S, Travo A, Richard JP, Prevot P, Lebleu B. 2006. Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides. Biochim Biophys Acta 1758: 364–374.
- van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ. 2007. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357: 2677–2686.
- Varon R, Gooding R, Steglich C, Marns L, Tang H, Angelicheva D, Yong KK, Ambrugger P, Reinhold A, Morar B, Baas F, Kwa M, Tournev I, Guerguelcheva V, Kremensky I, Lochmüller H, Müllner-Eidenböck A, Merlini L, Neumann L, Bürger J, Walter M, Swoboda K, Thomas PK, von Moers A, Risch N, Kalaydjieva L. 2003. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat Genet 35: 185–189.
- Vetrini F, Tammaro R, Bondanza S, Surace EM, Auricchio A, De Luca M, Ballabio A, Marigo V. 2006. Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Hum Mutat 27: 420–426.
- Wood M, Yin H, McClorey G. 2007. Modulating the expression of disease genes with RNA-based therapy. PLoS Genet 3: e109.
- Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL. 2009. Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 17: 864–871.