Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1†‡
Andrea Zatkova
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Search for more papers by this authorLudwine Messiaen
Center for Medical Genetics, Ghent University Hospital-OK5, Gent, Belgium
Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
Search for more papers by this authorIna Vandenbroucke
Center for Medical Genetics, Ghent University Hospital-OK5, Gent, Belgium
Search for more papers by this authorRotraud Wieser
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Search for more papers by this authorChrista Fonatsch
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Search for more papers by this authorAdrian R. Krainer
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Search for more papers by this authorCorresponding Author
Katharina Wimmer
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Institut für Medizinische Biologie, Medizinische Universität Wien, Währingerstrasse 10, 1090-Vienna, AustriaSearch for more papers by this authorAndrea Zatkova
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Search for more papers by this authorLudwine Messiaen
Center for Medical Genetics, Ghent University Hospital-OK5, Gent, Belgium
Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
Search for more papers by this authorIna Vandenbroucke
Center for Medical Genetics, Ghent University Hospital-OK5, Gent, Belgium
Search for more papers by this authorRotraud Wieser
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Search for more papers by this authorChrista Fonatsch
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Search for more papers by this authorAdrian R. Krainer
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Search for more papers by this authorCorresponding Author
Katharina Wimmer
Institut für Medizinische Biologie, Medizinische Universität Wien, Vienn, Austria
Institut für Medizinische Biologie, Medizinische Universität Wien, Währingerstrasse 10, 1090-Vienna, AustriaSearch for more papers by this authorCommunicated by Jean-Louis Mandel
The Supplementary Material referred to in this article can be viewed at www.interscience.wiley.com/jpages/1059-7794/suppmat
Abstract
Nonsense, missense, and even silent mutation-associated exon skipping is recognized in an increasing number of genes as a novel form of splicing mutation. The analysis of individual mutations of this kind can shed light on basic pre-mRNA splicing mechanisms. Using cDNA-based mutation detection analysis, we have identified one missense and six nonsense mutations that lead to different extents of exon-lacking transcripts in neurofibromatosis type 1 (NF1) patients. We confirmed mutation-associated exon skipping in a heterologous hybrid minigene context. There is evidence that the disruption of functional exonic splicing enhancer (ESE) sequences is frequently the mechanism underlying mutation-associated exon skipping. Therefore, we examined the wild-type and mutant NF1 sequences with two available ESE-prediction programs. Either or both programs predicted the disruption of ESE motifs in six out of the seven analyzed mutations. To ascertain the function of the predicted ESEs, we quantitatively measured their ability to rescue splicing of an enhancer-dependent exon, and found that all seven mutant ESEs had reduced splicing enhancement activity compared to the wild-type sequences. Our results suggest that the wild-type sequences function as ESE elements, whose disruption is responsible for the mutation-associated exon skipping observed in the NF1 patients. Further, this study illustrates the utility of ESE-prediction programs for delineating candidate sequences that may serve as ESE elements. However, until more refined prediction algorithms have been developed, experimental data, preferably from patient tissues, remain indispensable to assess the clinical significance, particularly of missense and silent mutations, and to understand the structure–function relationship in the corresponding protein. Hum Mutat 24:491–501, 2004. © 2004 Wiley-Liss, Inc.
REFERENCES
- Ars E, Kruyer H, Morell M, Pros E, Serra E, Ravella A, Estivill X, Lazaro C. 2003. Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 40: e82.
- Berget SM. 1995. Exon recognition in vertebrate splicing. J Biol Chem 270: 2411–2414.
- Black DL. 1991. Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells? Genes Dev 5: 389–402.
- Blencowe BJ. 2000. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25: 106–110.
- Caputi M, Kendzior RJ Jr, Beemon KL. 2002. A nonsense mutation in the fibrillin-1 gene of a Marfan syndrome patient induces NMD and disrupts an exonic splicing enhancer. Genes Dev 16: 1754–1759.
- Cartegni L, Krainer AR. 2002. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30: 377–384.
- Cartegni L, Chew SL, Krainer AR. 2002. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3: 285–298.
- Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. 2003. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 31: 3568–3571.
- Cawthon RM, Weiss R, Xu GF, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R, O'Connell P, White R. 1990. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62: 193–201.
- Colapietro P, Gervasini C, Natacci F, Rossi L, Riva P, Larizza L. 2003. NF1 exon 7 skipping and sequence alterations in exonic splice enhancers (ESEs) in a neurofibromatosis 1 patient. Hum Genet 113: 551–554.
- Coleman TP, Roesser JR. 1998. RNA secondary structure: an important cis-element in rat calcitonin/CGRP pre-messenger RNA splicing. Biochemistry 37: 15941–15950.
- Cooper TA, Mattox W. 1997. The regulation of splice-site selection, and its role in human disease. Am J Hum Genet 61: 259–266.
- Cote J, Chabot B. 1997. Natural base-pairing interactions between 5′ splice site and branch site sequences affect mammalian 5′ splice site selection. RNA 3: 1248–1261.
- Cote J, Dupuis S, Jiang Z, Wu JY. 2001. Caspase-2 pre-mRNA alternative splicing: Identification of an intronic element containing a decoy 3′ acceptor site. Proc Natl Acad Sci USA 98: 938–943.
- Coulter LR, Landree MA, Cooper TA. 1997. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 17: 2143–2150.
- Dietz HC, Valle D, Francomano CA, Kendzior RJ Jr, Pyeritz RE, Cutting GR. 1993. The skipping of constitutive exons in vivo induced by nonsense mutations. Science 259: 680–683.
- Dietz HC, Kendzior RJ Jr. 1994. Maintenance of an open reading frame as an additional level of scrutiny during splice site selection. Nat Genet 8: 183–188.
- Dominski Z, Kole R. 1991. Selection of splice sites in pre-mRNAs with short internal exons. Mol Cell Biol 11: 6075–6083.
- Dominski Z, Kole R. 1992. Cooperation of pre-mRNA sequence elements in splice site selection. Mol Cell Biol 12: 2108–2114.
- D'Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM, Bird TD, Schellenberg GD. 1999. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci USA 96: 5598–5603.
- Fackenthal JD, Cartegni L, Krainer AR, Olopade OI. 2002. BRCA2 T2722R is a deleterious allele that causes exon skipping. Am J Hum Genet 71: 625–631.
- Fahsold R, Hoffmeyer S, Mischung C, Gille C, Ehlers C, Kucukceylan N, Abdel-Nour M, Gewies A, Peters H, Kaufmann D, Buske A, Tinschert S, Nürnberg P. 2000. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 66: 790–818.
- Fairbrother WG, Yeh RF, Sharp PA, Burge CB. 2002. Predictive identification of exonic splicing enhancers in human genes. Science 297: 1007–1013.
- Faustino NA, Cooper TA. 2003. Pre-mRNA splicing and human disease. Genes Dev 17: 419–437.
- Ferrari S, Giliani S, Insalaco A, Al-Ghonaium A, Soresina AR, Loubser M, Avanzini MA, Marconi M, Badolato R, Ugazio AG, Levy Y, Catalan N, Durandy A, Tbakhi A, Notarangelo LD, Plebani A. 2001. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA 98: 12614–12619.
- Gersappe A, Pintel DJ. 1999. A premature termination codon interferes with the nuclear function of an exon splicing enhancer in an open reading frame-dependent manner. Mol Cell Biol 19: 1640–1650.
- Gontarek RR, McNally MT, Beemon K. 1993. Mutation of an RSV intronic element abolishes both U11/U12 snRNP binding and negative regulation of splicing. Genes Dev 7: 1926–1936.
- Gorlov IP, Gorlova OY, Frazier ML, Amos CI. 2003. Missense mutations in hMLH1 and hMSH2 are associated with exonic splicing enhancers. Am J Hum Genet 73: 1157–1161.
- Graveley BR. 2000. Sorting out the complexity of SR protein functions. RNA 6: 1197–211.
- Hastings ML, Krainer AR. 2001. Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13: 302–309.
- Hentze MW, Kulozik AE. 1999. A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96: 307–310.
- Hoffmeyer S, Nurnberg P, Ritter H, Fahsold R, Leistner W, Kaufmann D, Krone W. 1998. Nearby stop codons in exons of the neurofibromatosis type 1 gene are disparate splice effectors. Am J Hum Genet 62: 269–277.
- Huson S, Hughes R. 1994. The neurofibromatoses: a clinical and pathogenetic overview. London: Chapman and Hall Medical. p 23–49.
- Kashima T, Manley JL. 2003. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34: 460–463.
- Liu HX, Zhang M, Krainer AR. 1998. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12: 1998–2012.
- Liu HX, Chew SL, Cartegni L, Zhang MQ, Krainer AR. 2000. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 20: 1063–1071.
- Liu HX, Cartegni L, Zhang MQ, Krainer AR. 2001. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet 27: 55–58.
- Maquat LE, Carmichael GG. 2001. Quality control of mRNA function. Cell 104: 173–176.
- Maquat LE. 2002. NASty effects on fibrillin pre-mRNA splicing: another case of ESE does it, but proposals for translation-dependent splice site choice live on. Genes Dev 16: 1743–1753.
- Messiaen L, Callens T, De Paepe A, Craen M, Mortier G. 1997. Characterisation of two different nonsense mutations, C6792A and C6792G, causing skipping of exon 37 in the NF1 gene. Hum Genet 101: 75–80.
- Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD. 2000. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15: 541–555.
- Mine M, Brivet M, Touati G, Grabowski P, Abitbol M, Marsac C. 2003. Splicing error in E1alpha pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation. J Biol Chem 278: 11768–11772.
- Muro AF, Caputi M, Pariyarath R, Pagani F, Buratti E, Baralle FE. 1999. Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol Cell Biol 19: 2657–2671.
- Pagani F, Buratti E, Stuani C, Baralle FE. 2003a. Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem 278: 26580–26588.
- Pagani F, Stuani C, Tzetis M, Kanavakis E, Efthymiadou A, Doudounakis S, Casals T, Baralle FE. 2003b. New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet 12: 1111–1120.
- Ryan KJ, Cooper TA. 1996. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol Cell Biol 16: 4014–4023.
- Schwarze U, Hata R, McKusick VA, Shinkai H, Hoyme HE, Pyeritz RE, Byers PH. 2004. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet 74: 917–930.
- Shiga N, Takeshima Y, Sakamoto H, Inoue K, Yokota Y, Yokoyama M, Matsuo M. 1997. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. J Clin Invest 100: 2204–2210.
- Siebel CW, Fresco LD, Rio DC. 1992. The mechanism of somatic inhibition of Drosophila P-element pre-mRNA splicing: multiprotein complexes at an exon pseudo-5′ splice site control U1 snRNP binding. Genes Dev 6: 1386–1401.
- Stickeler E, Fraser SD, Honig A, Chen AL, Berget SM, Cooper TA. 2001. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J 20: 3821–3830.
- Valentine CR, Heflich RH. 1997. The association of nonsense mutation with exon-skipping in hprt mRNA of Chinese hamster ovary cells results from an artifact of RT-PCR. RNA 3: 660–676.
- Valentine CR. 1998. The association of nonsense codons with exon skipping. Mutat Res 411: 87–117.
- Vandenbroucke I, Vandesompele J, De Paepe A, Messiaen L. 2001. Quantification of splice variants using real-time PCR. Nucleic Acids Res 29: E68.
- Vandenbroucke I, Vandesompele J, De Paepe A, Messiaen L. 2002. Quantification of NF1 transcripts reveals novel highly expressed splice variants. FEBS Lett 522: 71–76.
- Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NG, Jenkins NA, White R, O'Connell P. 1990. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62: 187–192.
- Vuillaumier-Barrot S, Barnier A, Cuer M, Durand G, Grandchamp B, Seta N. 1999. Characterization of the 415G>A (E139K) PMM2 mutation in carbohydrate-deficient glycoprotein syndrome type Ia disrupting a splicing enhancer resulting in exon 5 skipping. Hum Mutat 14: 543–544.
- Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL, Brownstein BH, Collins FS. 1990. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249: 181–186.
- Wimmer K, Eckart M, Rehder H, Fonatsch C. 2000a. Illegitimate splicing of the NF1 gene in healthy individuals mimics mutation-induced splicing alterations in NF1 patients. Hum Genet 106: 311–313.
- Wimmer K, Eckart M, Stadler PF, Rehder H, Fonatsch C. 2000b. Three different premature stop codons lead to skipping of exon 7 in neurofibromatosis type I patients. Hum Mutat 16: 90–91.
- Wimmer K, Eckart M, Meyer-Puttlitz B, Fonatsch C, Pietsch T. 2002. Mutational and expression analysis of the NF1 gene argues against a role as tumor suppressor in sporadic pilocytic astrocytomas. J Neuropathol Exp Neurol 61: 896–902.