The First Reaction of Dimethoxycarbene with an Imine Moiety
Grzegorz Mlostoń
University of Łódź, Department of Organic and Applied Chemistry, Narutowicza 68, PL-90-136 Łódź, (phone: +48 42 635 5761; fax: +48 42 635 5380)
Search for more papers by this authorHeinz Heimgartner
Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (phone: +41 44 635 4282; fax: +41 44 635 6812)
Search for more papers by this authorGrzegorz Mlostoń
University of Łódź, Department of Organic and Applied Chemistry, Narutowicza 68, PL-90-136 Łódź, (phone: +48 42 635 5761; fax: +48 42 635 5380)
Search for more papers by this authorHeinz Heimgartner
Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (phone: +41 44 635 4282; fax: +41 44 635 6812)
Search for more papers by this authorAbstract
The nucleophilic dimethoxycarbene (DMC; 2) generated by thermal decomposition of 2,5-dihydro-1,3,4-oxadiazole derivative 1 in boiling toluene reacts smoothly with N-(9H-fluoren-9-ylidene)-4-methylbenzenesulfonamide (7b) to yield carbonimidoate derivative 10. A multi-step reaction pathway, initiated by the attack of DMC onto the CN bond and followed by the migration of the sulfonyl group (or via a sulfinate anion) is proposed to explain the formation of the final product. In contrast to the formal ketimine 7b, N-benzylidene-4-methylbenzenesulfonamide (7a), a formal aldimine, does not react with DMC under comparable conditions.
References
- 1
R. W. Hoffmann, H. Häuser, Tetrahedron Lett. 1964, 5, 197;
10.1016/0040-4039(64)80002-2 Google ScholarR. W. Hoffmann, C. Wünsche, Chem. Ber. 1967, 100, 943; R. W. Hoffmann, Acc. Chem. Res. 1985, 18, 248.
- 2 R. A. Moss, M. Wlostowski, J. Terpinski, G. Kmiecik-Lawrynowicz, K. Krogh-Jespersen, J. Am. Chem. Soc. 1987, 109, 3811.
- 3 M. El-Saidi, K. Kassam, D. L. Pole, T. Tadey, J. Warkentin, J. Am. Chem. Soc. 1992, 114, 8751; K. Kassam, D. L. Pole, M. El-Saidi, J. Warkentin, J. Am. Chem. Soc. 1994, 116, 1161; P. Conture, M. El-Saidi, J. Warkentin, Can. J. Chem. 1997, 75, 326.
- 4 J. Warkentin, J. Chem. Soc., Perkin Trans. 1 2000, 2161.
- 5 H. P. Reisenauer, J. Romański, G. Mlostoń, P. R. Schreiner, Eur. J. Org. Chem. 2006, 4813.
- 6 H. W. Zhou, G. Mlostoń, J. Warkentin, Org. Lett. 2005, 7, 487.
- 7 R. Bartnik, G. Mlostoń, Tetrahedron 1984, 40, 2569; A. Padwa, S. F. Hornbuckle, Chem. Rev. 1991, 91, 263; A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223; A. F. Khlebnikov, M. S. Novikov, R. R. Kostikov, Russ. Chem. Rev. 2005, 74, 171.
- 8 M. P. Doyle, M. A. McKarvey, T. Ye, ‘Modern Catalytic Methods for Organic Synthesis with Diazo Compounds’, J. Wiley & Sons, New York, 1998; G. Maas, Chem. Soc. Rev. 2004, 33, 183.
- 9 P. C. Venneri, J. Warkentin, Can. J. Chem. 2000, 78, 1194.
- 10 V. Nair, S. Bindu, V. Sreckumar, L. Balagopal, Synthesis 2003, 1446; V. Nair, P. B. Beneesh, V. Sreckumar, S. Bindu, R. S. Menon, A. Deepthi, Tetrahedron Lett. 2005, 46, 201; V. Nair, A. Deepthi, M. Poonoth, B. Santhamma, S. Vellalath, B. P. Babu, R. Mokan, E. Suresh, J. Org. Chem. 2006, 71, 2313.
- 11
M. Dawid, G. Mlostoń, J. Warkentin, Org. Lett. 2001, 3, 2455;
M. Dawid, G. Mlostoń, J. Warkentin, Chem.–Eur. J. 2002, 8, 2184.
10.1002/1521-3765(20020503)8:9<2184::AID-CHEM2184>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 12 M. Dawid, G. Mlostoń, D. L. Reid, J. Warkentin, Can. J. Chem. 2003, 81, 1025; A. W. Erian, D. L. Reid, J. Warkentin, J. Sulfur Chem. 2005, 26, 203.
- 13 D. L. Pole, J. Warkentin, J. Org. Chem. 1997, 62, 4065.
- 14 M. Dawid, P. C. Venneri, J. Warkentin, Can. J. Chem. 2001, 79, 110.
- 15 J. Romański, G. Mlostoń, H. Heimgartner, Helv. Chim. Acta 2007, 90, 1279.
- 16 J. H. Rigby, P. J. Burke, Heterocycles 2006, 67, 643.
- 17 J. H. Rigby, J.-C. Brouet, P. J. Burke, S. Rohach, S. Sidique, M. J. Heeg, Org. Lett. 2006, 8, 3121.
- 18 G. Mlostoń, A. Bodzioch, Z. Cebulska, A. Linden, H. Heimgartner, Pol. J. Chem. 2007, 81, 631.
- 19 R. N. Ram, A. A. Khan, Synth. Commun. 2001, 31, 841.
- 20 D. M. Lemal, E. P. Gosselink, S. D. McGregor, J. Am. Chem. Soc. 1966, 88, 582.
- 21 C. K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
- 22 O. Tsuge, S. Kanemasa, Adv. Heterocycl. Chem. 1989, 45, 231.
- 23 A. Sliwinska, W. Czardybon, J. Warkentin, Org. Lett. 2007, 9, 695.
- 24 B. M. Trost, C. Marrs, J. Org. Chem. 1991, 56, 6468.
- 25 R. Hooft, KappaCCD Collect Software, Nonius BV, Delft, 1999.
- 26 Z. Otwinowski, W. Minor, in ‘Methods in Enzymology’, Vol. 276, ‘Macromolecular Crystallography’, Part A, Eds. C. W. Carter Jr., and R. M. Sweet, Academic Press, New York, 1997, p. 307–326.
- 27 R. H. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33.
- 28 G. M. Sheldrick, SHELXS97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, 1997.
- 29 A. L. Spek, PLATON, Program for the Analysis of Molecular Geometry, University of Utrecht, Utrecht, 2006.
- 30 E. N. Maslen, A. G. Fox, M. A. O'Keefe, in ‘International Tables for Crystallography’, Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, p. 477.
- 31 R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
- 32 J. A. Ibers, W. C. Hamilton, Acta Crystallogr. 1964, 17, 781.
- 33 D. C. Creagh, W. J. McAuley, in ‘International Tables for Crystallography’, Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.6.8, p. 219.
- 34 D. C. Creagh, J. H. Hubbell, in ‘International Tables for Crystallography’, Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.4.3, p. 200.
- 35 G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, 1997.