Catalytic Decomposition of Diazo Compounds as a Method for Generating Carbonyl-Ylide Dipoles
Albert Padwa
Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA (phone: +1 404-727-0283; fax: +1 404-727-6629)
Search for more papers by this authorAlbert Padwa
Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA (phone: +1 404-727-0283; fax: +1 404-727-6629)
Search for more papers by this authorAbstract
The transition metal catalyzed reaction of α-diazo carbonyl compounds has found numerous applications in organic synthesis, and its use in either heterocyclic or carbocyclic ring formation is well-precedented. In contrast to other catalysts that are suitable for carbenoid reactions of diazo compounds, those constructed with the dirhodium(II) framework are most amenable to ligand modification that, in turn, can influence reaction selectivity. The reaction of rhodium carbenoids with carbonyl groups represents a very efficient method for generating carbonyl ylide dipoles. Rhodium-mediated carbenoid–carbonyl cyclization reactions have been extensively utilized as a powerful method for the construction of a variety of novel polycyclic ring systems. This article will emphasize some of the more recent synthetic applications of the tandem cyclization/cycloaddition cascade for natural product synthesis. Discussion centers on the chemical behavior of the rhodium metal–carbenoid complex that is often affected by the nature of the ligand groups attached to the metal center.
References
- 1 J. Hartung, Eur. J. Org. Chem. 2001, 619; P. A. Bartlett, J. Myerson, J. Am. Chem. Soc. 1978, 100, 3950; W. Friedrichson, in ‘Comprehensive Heterocyclic Chemistry II’, Ed. C. W. Bird, Pergamon Press, Oxford, 1996, Vol. 2, 351; M. C. Elliott, E. Williams, J. Chem. Soc., Perkin Trans. 1 2001, 2303.
- 2 J. W. Westley, ‘Polyether Antibiotics: Naturally Occurring Acid Ionophores’, Marcel Dekker, Vol. I and II, New York, 1982; Y. Kishi, G. Schmid, T. Fukuyama, K. Akasaka, J. Am. Chem. Soc. 1979, 101, 259.
- 3 Y. Y. Lin, M. Risk, S. M. Ray, D. Van Engen, J. Clardy, J. Golik, J. C. James, K. Nakanishi, J. Am. Chem. Soc. 1981, 103, 6773; Y. Shimizu, H. N. Chou, H. Bando, G. Van Duyne, J. C. Clardy, J. Am. Chem. Soc. 1986, 108, 514.
- 4 R. E. Moore, in ‘Marine Natural Products: Chemical and Biological Perspectives’, Ed. P. J. Scheuer, Academic Press, New York, 1978, Vol. 1.
- 5 E. Piers, V. Karunaratne, J. Org. Chem. 1983, 48, 1774; P. Magnus, D. Gange, L. Bass, E. V. Arnold, J. Clardy, J. Am. Chem. Soc. 1980, 102, 2134; D. Gange, P. Magnus, J. Am. Chem. Soc. 1978, 100, 7746; C. Brückner, H. U. Reissig, J. Org. Chem. 1988, 53, 2440.
- 6 K. Fugami, K. Oshima, K. Utimoto, Tetrahedron Lett. 1987, 28, 809; W. Eberbach, B. Burchardt, Chem. Ber. 1978, 111, 3665; T. Kauffmann, Angew. Chem., Int. Ed. 1974, 13, 627; H. Ochiai, T. Nishihara, Y. Tamaru, Z. Yoshida, J. Org. Chem. 1988, 53, 1343; S. E. Drewes, R. F. A. Hoole, Synth. Commun. 1985, 15, 1067; B. M. Trost, S. A. King, T. Schmidt, J. Am. Chem. Soc. 1989, 111, 5902.
- 7 ‘1,3-Dipolar Cycloaddition Chemistry’, Ed. A. Padwa, Wiley-Interscience, New York, 1984; A. Padwa, W. H. Pearson, ‘Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products’, John Wiley & Sons, Inc., 2003.
- 8 R. Huisgen, Angew. Chem., Int. Ed. 1977, 16, 572.
- 9 G. W. Griffin, A. Padwa, in ‘Photochemistry of Heterocyclic Compounds’, Ed. O. Buchart, Wiley, New York, 1976, Chapt. 2.
- 10 P. K. Das, G. W. Griffin, J. Photochem. 1984, 27, 317.
- 11 M. Békhazi, P. J. Smith, J. Warkentin, Can. J. Chem. 1984, 62, 1646.
- 12 N. Shimizu, P. D. Bartlett, J. Am. Chem. Soc. 1978, 100, 4260.
- 13 R. W. Hoffmann, H. Luthardt, J. Chem. Ber. 1968, 101, 3861.
- 14 D. Keus, M. Kaminski, J. Warkentin, J. Org. Chem. 1984, 49, 343; M. Bèkhazi, J. Warkentin, J. Am. Chem. Soc. 1983, 105, 1289; M. Bèkhazi, J. Warkentin, Can. J. Chem. 1983, 61, 619.
- 15 M. P. Doyle, M. A. McKervey, T. Ye, ‘Modern Catalytic Methods for Organic Synthesis with Diazo Compounds’, John Wiley & Sons, New York, 1998.
- 16 A. Padwa, S. F. Hornbuckle, Chem. Rev. 1991, 91, 263; A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223; A. Padwa, Top. Curr. Chem. 1997, 189, 121.
- 17 D. M. Hodgson, F. Y. T. M. Pierard, P. A. Stupple, Chem. Soc. Rev. 2001, 30, 50; M. P. Doyle, Chem. Rev. 1986, 86, 919; G. Mehta, S. Muthusamy, Tetrahedron 2002, 58, 9477.
- 18 G. Maas, Top. Curr. Chem. 1987, 137, 75.
- 19 H. Tomioka, T. Miwa, S. Suzuki, Y. Izawa, Bull. Chem. Soc. Jpn. 1980, 53, 753.
- 20 G. K. S. Prakash, R. W. Ellis, J. D. Felberg, G. A. Olah, J. Am. Chem. Soc. 1986, 108, 1341.
- 21 P. C. Wong, D. Griller, J. C. Scaiano, J. Am. Chem. Soc. 1982, 104, 6631.
- 22 J. C. Scaiano, W. G. McGimpsey, H. L. Casal, J. Am. Chem. Soc. 1985, 107, 7204.
- 23 E. P. Janulis Jr., A. J. Arduengo III, J. Am. Chem. Soc. 1983, 105, 5929.
- 24 R. S. Becker, R. O. Bost, J. Kolc, N. R. Bertoniere, R. L. Smith, G. W. Griffin, J. Am. Chem. Soc. 1970, 92, 1302.
- 25
E. Buchner, T. Curtius, Ber. Dtsch. Chem. Ges. 1885, 18, 2371.
10.1002/cber.188501802118 Google Scholar
- 26 W. Dieckmann, Ber. Dtsch. Chem. Ges. 1910, 43, 1024.
- 27 P. de March, R. Huisgen, J. Am. Chem. Soc. 1982, 104, 4952.
- 28 R. Huisgen, P. de March, J. Am. Chem. Soc. 1982, 104, 4953.
- 29 M. Alt, G. Maas, Tetrahedron 1994, 50, 7435; M. P. Doyle, D. C. Forbes, M. N. Protopopova, S. A. Stanley, M. M. Vasbinder, K. R. Xavier, J. Org. Chem. 1997, 62, 7210; B. Jiang, X. Zhang, Z. Luo, Org. Lett. 2002, 4, 2453; C.-D. Lu, Z.-Y. Chen, H. Liu, W.-H. Hu, A.-Q. Mi, Org. Lett. 2004, 6, 3071; H. M. L. Davies, J. DeMeese, Tetrahedron Lett. 2001, 42, 6803.
- 30 A. E. Russell, J. Brekan, L. Gronenberg, M. P. Doyle, J. Org. Chem. 2004, 69, 5269; M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 933.
- 31 T. Ibata, J. Toyoda, M. Sawada, T. Tanaka, J. Chem. Soc., Chem. Commun. 1986, 1266; T. Ibata, J. Toyoda, Bull. Chem. Soc. Jpn. 1986, 59, 2489 and refs. cit. therein.
- 32 A. Padwa, S. P. Carter, H. Nimmesgern, J. Org. Chem. 1986, 51, 1157; A. Padwa, S. P. Carter, H. Nimmesgern, P. D. Stull, J. Am. Chem. Soc. 1988, 110, 2894; A. Padwa, P. D. Stull, Tetrahedron Lett. 1987, 28, 5407.
- 33 A. Padwa, G. E. Fryxell, L. Zhi, J. Org. Chem. 1988, 53, 2875; A. Padwa, G. E. Fryxell, L. Zhi, J. Am. Chem. Soc. 1990, 112, 3100.
- 34 A. Padwa, R. L. Chinn, S. F. Hornbuckle, L. Zhi, Tetrahedron Lett. 1989, 30, 301; A. Padwa, R. L. Chinn, S. F. Hornbuckle, Z. J. Zhang, J. Org. Chem. 1991, 56, 3271.
- 35 A. Padwa, R. L. Chinn, L. Zhi, Tetrahedron Lett. 1989, 30, 1491.
- 36 R. M. Silverstein, R. G. Brownlee, T. E. Bellas, O. L. Wood, L. E. Browne, Science 1968, 159, 889.
- 37 W. G. Dauben, J. Dinges, T. C. Smith, J. Org. Chem. 1993, 58, 7635.
- 38 M. C. McMills, L. Zhuang, D. L. Wright, W. Watt, Tetrahedron Lett. 1994, 35, 8311.
- 39 P. A. Wender, H. Kogen, H. Y. Lee, J. D. Munger Jr., R. S. Wilhelm, P. D. Williams, J. Am. Chem. Soc. 1989, 111, 8957.
- 40 H. Koyama, R. G. Ball, G. D. Berger, Tetrahedron Lett. 1994, 35, 9185.
- 41 A. Nadin, K. C. Nicolaou, Angew. Chem., Int. Ed. 1996, 35, 1622.
- 42 O. Kataoka, S. Kitagaki, N. Watanabe, J. Kobayashi, S. Nakamura, M. Shiro, S. Hashimoto, Tetrahedron Lett. 1998, 39, 2371.
- 43 D. M. Hodgson, J. M. Bailey, T. Harrison, Tetrahedron Lett. 1996, 37, 4623.
- 44 D. M. Hodgson, C. Villalonga-Barber, Tetrahedron Lett. 2000, 41, 5597.
- 45 P. Chiu, B. Chen, K. F. Cheng, Org. Lett. 2001, 3, 1721.
- 46 B. N. Zhou, B. P. Ying, G. Q. Song, Z. H. Chen, J. Han, Y. F. Yan, Planta Med. 1983, 47, 35.
- 47 D. M. Hodgson, T. D. Avery, A. C. Donohue, Org. Lett. 2002, 4, 1809.
- 48
B. Liu, K. D. Moeller, Tetrahedron Lett. 2001, 42, 7163;
F. López, L. Castedo, J. L. Mascareñas, Chem.–Eur. J. 2002, 8, 884.
10.1002/1521-3765(20020215)8:4<884::AID-CHEM884>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 49 J. F. Liebman, A. Greenberg, Chem. Rev. 1976, 76, 311.
- 50 M. S. Kharasch, T. Rudy, W. Nudenberg, G. Büchi, J. Org. Chem. 1953, 18, 1030.
- 51 A. Padwa, V. P. Sandanayaka, E. A. Curtis, J. Am. Chem. Soc. 1994, 116, 2667.
- 52 F. R. Kinder Jr., K. W. Bair, J. Org. Chem. 1994, 59, 6965; E. A. Curtis, V. P. Sandanayaka, A. Padwa, Tetrahedron Lett. 1995, 36, 1989.
- 53 S. J. Neeson, P. J. Stevenson, Tetrahedron 1989, 45, 6239.
- 54 A. Padwa, E. A. Curtis, V. P. Sandanayaka, J. Org. Chem. 1996, 61, 73.
- 55 A. C. Lottes, J. A. Landgrebe, K. Larsen, Tetrahedron Lett. 1989, 30, 4089; A. C. Lottes, J. A. Landgrebe, K. Larsen, Tetrahedron Lett. 1989, 30, 4093.
- 56 A. Padwa, D. J. Austin, S. F. Hornbuckle, J. Org. Chem. 1996, 61, 63.
- 57 D. M. Hodgson, P. A. Stupple, C. Johnstone, Tetrahedron Lett. 1997, 38, 6471.
- 58 D. M. Hodgson, A. H. Labande, F. Y. T. M. Pierard, M. A. E. Castro, J. Org. Chem. 2003, 68, 6153.
- 59 D. M. Hodgson, R. Glen, A. J. Redgrave, Tetrahedron Lett. 2002, 43, 3927.
- 60 D. M. Hodgson, R. Glen, G. H. Grant, A. J. Redgrave, J. Org. Chem. 2003, 68, 581.
- 61 M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911.
- 62 H. Suga, H. Ishida, T. Ibata, Tetrahedron Lett. 1998, 39, 3165.
- 63 S. Kitagaki, M. Anada, O. Kataoka, K. Matsuno, C. Umeda, N. Watanabe, S. Hashimoto, J. Am. Chem. Soc. 1999, 121, 1417; S. Kitagaki, M. Yasugahira, M. Anada, M. Nakajima, S. Hashimoto, Tetrahedron Lett. 2000, 41, 5931.