AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2 and 5-lipoxygenase activities
Caroline Ménard
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorBarbara Valastro
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorMarc-André Martel
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorÉmilie Chartier
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorAudrey Marineau
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorMichel Baudry
Neuroscience Program, University of Southern California, Los Angeles, California
Search for more papers by this authorCorresponding Author
Guy Massicotte
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Département de Chimie-Biologie, U.Q.T.R., C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7Search for more papers by this authorCaroline Ménard
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorBarbara Valastro
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorMarc-André Martel
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorÉmilie Chartier
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorAudrey Marineau
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Search for more papers by this authorMichel Baudry
Neuroscience Program, University of Southern California, Los Angeles, California
Search for more papers by this authorCorresponding Author
Guy Massicotte
Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Département de Chimie-Biologie, U.Q.T.R., C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7Search for more papers by this authorAbstract
The present investigation provides the first indication that constitutive, calcium-independent phospholipase A2 activity (iPLA2) modulates phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of glutamate receptors. Preincubation of frozen-thawed brain sections with two iPLA2 inhibitors, bromoenol lactone (BEL) or palmitoyl trifluoromethyl ketone (PACO), produced a dose-dependent enhancement in phosphorylation at both Ser831 and Ser845 sites on the GluR1 subunit of AMPA receptors. This effect was not associated with changes in phosphorylation at the Ser sites of either the GluR2/3 subunits of AMPA receptors or the NR1 subunits of N-methyl-D-aspartate (NMDA) receptors, nor was it reproduced by inhibition of the calcium-dependent form of PLA2 activity. These results suggest that the effects of these inhibitors are selective to GluR1 subunits and that they are dependent on iPLA2 activity. The ability of iPLA2 inhibitors to increase GluR1 phosphorylation was mimicked by the 5-lipoxygenase (5-LO) inhibitor MK-886, but not by blockers of 12-lipoxygenase (12-LO) or cyclooxygenase. Additional experiments indicated that calcium-mediated truncation of GluR1 subunits was reduced by iPLA2 inhibitors, an effect that was not correlated with overall changes in the distribution of AMPA receptors between intracellular and membrane compartments prepared from whole brain sections. However, quantitative autoradiographic analysis indicated enhanced 3H-AMPA binding to the CA1 stratum radiatum of the hippocampus in BEL-treated sections. Saturation kinetics experiments demonstrated that this binding augmentation was due to an increase in the maximal number of AMPA binding sites. Altogether, our results point to the conclusion that basal iPLA2 activity, through the generation of 5-LO metabolites, regulates AMPA receptor phosphorylation of GluR1 subunits, an effect that might selectively influence the number of membrane receptors in area CA1 of the hippocampus. © 2005 Wiley-Liss, Inc.
REFERENCES
- Abeliovich A, Chen C, Goda Y, Silva AJ, Stevens CF, Tonegawa S. 1993. Modified hippocampal long-term potentiation in PKCγ-mutant mice. Cell 75: 1252–1262.
- Akers RF, Lovinger DM, Colley PA, Linden DJ, Routtenberg A. 1986. Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231: 587–589.
- Allison DW, Gelfand VI, Spector I, Craig AM. 1998. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA vs AMPA receptors. J Neurosci 18: 2423–2436.
- Balsinde J, Dennis EA. 1997. Function and inhibition of intracellular calcium-independent phospholipase A2. J Biol Chem 272: 16069–16072.
- Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. 1997. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276: 2042–2045.
- Baudry M, Lynch G. 2001. Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol Learn Mem 76: 284–297.
- Bettini E, Maggi A. 1991. A rapid method for the quantitation of estrogen receptors in small amounts of tissue. J Immunol Methods 144: 87–91.
- Bi R, Bi X, Baudry M. 1998a. Phosphorylation regulates calpain-mediated truncation of glutamate ionotropic receptors. Brain Res 797: 154–158.
- Bi X, Chen J, Baudry M. 1998b. Calpain-mediated proteolysis of GluR1 subunits in organotypic hippocampal cultures following kainic acid treatment. Brain Res 781: 355–357.
- Bi X, Tocco G, Baudry M. 1994. Calpain-mediated regulation of AMPA receptors in adult rat brain. NeuroReport 6: 61–64.
- Boden SE, Schweizer S, Bertsche T, Dufer M, Drews G, Safayhi H. 2001. Stimulation of leukotriene synthesis in intact polymorphonuclear cells by the 5-lipoxygenase inhibitor 3-oxo-tirucallic acid. Mol Pharmacol 60: 267–273.
- Bredt DS, Nicoll RA. 2003. AMPA receptor trafficking at excitatory synapses. Neuron 40: 361–379.
- Broutman G, Baudry M. 2001. Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus. J Neurosci 21: 27–34.
- Brown WJ, Chambers K, Doody A. 2003. Phospholipase A2 enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4: 214–221.
- Burkert E, Szellas D, Radmark O, Steinhilber D, Werz O. 2003. Cell type-dependent activation of 5-lipoxygenase by arachidonic acid. J Leukoc Biol 73: 191–200.
- Capodici C, Pillinger MH, Han G, Philips MR, Weissmann G. 1998. Integrin-dependent homotypic adhesion of neutrophils. Arachidonic acid activates Raf-1/Mek/Erk via a 5-lipoxygenase-dependent pathway. J Clin Invest 102: 165–175.
-
Chabot C,
Gagné J,
Giguère C,
Bernard J,
Baudry M,
Massicotte G.
1998.
Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus.
Hippocampus
8:
299–309.
10.1002/(SICI)1098-1063(1998)8:3<299::AID-HIPO11>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- Chen W, Glasgow W, Murphy E, Steenbergen C. 1999. Lipoxygenase metabolism of arachidonic acid in ischemic preconditioning and PKC-induced protection in heart. Am J Physiol 276(6 Pt 2): H2094–H2101.
- Chen YQ, Duniec ZM, Liu B, Hagmann W, Gao X, Shimoji K, Marnett LJ, Johnson CR, Honn KV. 1994. Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Res 54: 1574–1579.
- Chung HJ, Steinberg JP, Huganir RL, Linden DJ. 2003. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300: 1751–1755.
- de Figueiredo P, Drecktrah D, Katzenellenbogen JA, Strang M, Brown WJ. 1998. Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. Proc Natl Acad Sci USA 95: 8642–8647.
- Derkach V, Barria A, Soderling TR. 1999. Ca2+/calmodulin kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96: 3269–3274.
- Dingledine R, Borges K, Bowie D, Traynelis SF. 1999. The glutamate receptor ion channels. Pharmacol Rev 51: 7–61.
- Esteban JA, Shi S-H, Wilson C, Nuriya M, Huganir RL, Malinow R. 2003. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6: 136–143.
- Farooqui AA, Litsky ML, Farooqui T, Horrocks LA. 1999. Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res Bull 49: 139–153.
- Fujita S, Ikegaya Y, Nishiyama N, Matsuki N. 2000. Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn J Pharmacol 83: 277–278.
- Gilroy DW, Newson J, Sawmynaden P, Willoughby DA, Croxtall JD. 2004. A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J 18: 489–498.
- Harder DR, Campbell WB, Roman RJ. 1995. Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res 32: 79–92.
- Harrison PJ, Law AJ, Eastwood SL. 2003. Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003: 94–101.
- Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R. 2000. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287: 2262–2267.
- Henley JM. 1995. Subcellular localization and molecular pharmacology of distinct populations of [3H]-AMPA binding sites in rat hippocampus. Br J Pharmacol 115: 295–301.
- Huang CC, You JL, Wu MY, Hsu KS. 2004. Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI.Rab5 complex. Potential role in (S)-3,5-dihydroxyphenylglycene-induced long term depression. J Biol Chem 279: 12286–12292.
- Kalyankrishna S, Malik KU. 2003. Norepinephrine-induced stimulation of p38 mitogen-activated protein kinase is mediated by arachidonic acid metabolites generated by activation of cytosolic phospholipase A in vascular smooth muscle cells. J Pharmacol Exp Ther 304: 761–772.
- Kuroiwa N, Nakamura M, Tagaya M, Takatsuki A. 2001. Arachidonyltrifluoromethyl ketone, a phospholipase A2 antagonist, induces dispersal of both Golgi stack- and trans Golgi network-resident proteins throughout the cytoplasm. Biochem Biophys Res Commun 281: 582–588.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
- Lamprecht R, LeDoux J. 2004. Structural plasticity and memory. Nat Rev Neurosci 5: 45–54.
- Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL. 2000. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405: 955–959.
- Lepley RA, Fitzpatrick FA. 1996. Inhibition of mitogen-activated protein kinase kinase blocks activation and redistribution of 5-lipoxygenase in HL-60 cells. Arch Biochim Biophys 331: 141–144.
- Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicholl RA. 1995. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci USA 92: 11175–11179.
- MacIntyre JP, Pope BL. 1991. The involvement of protein kinase C, calcium, and 5-lipoxygenase in the production of tumor necrosis factor by a cloned interleukin-3 dependent cell line with natural cytotoxic activity. Int J Immunopharmacol 13: 175–184.
- Malenka RC. 1994. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78: 535–538.
- Malinow R. 2003. AMPA receptor trafficking and long-term potentiation. Phil Trans R Soc Lond B 358: 707–714.
- Massicotte G. 2000. Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol Life Sci 57: 1542–1550.
- Massicotte G, Vanderklish P, Lynch G, Baudry M. 1991. Modulation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation? Proc Natl Acad Sci USA 88: 1893–1897.
- Mayorga LS, Colombo MI, Lennartz M, Brown EJ, Rahman H, Weiss R, Lennon PJ, Stahl PD. 1993. Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role for PLA2 in endocytosis. Proc Natl Acad Sci USA 90: 10255–10259.
- Michaelis EK. 1998. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54: 369–415.
- Mulkey RM, Herron CE, Malenka RC. 1993. An essential role for protein phosphatases in hippocampal long-term depression. Science 261: 1051–1055.
- Mulkey RM, Endo S, Shenollkar SS, Malenka RC. 1994. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369: 486–488.
- Nayak A, Zastrow DJ, Lickteig R, Zahniser NR, Browning MD. 1998. Maintenance of late-phase is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394: 680–683.
- O'Dell TJ, Kandel ER. 1994. Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn Mem 1: 129–139.
- O'Flaherty JT, Kuroki M, Nixon AB, Wijkander J, Yee E, Lee SL, Smitherman PK, Wykle RL, Daniel LW. 1996. 5-Oxo-eicosanoids and hematopoietic cytokines cooperate in stimulating neutrophil function and the mitogen-activated protein kinase pathway. J Biol Chem 271: 17821–17828.
- Papavassiliou AG. 1994. Preservation of protein phosphoryl groups in immunoprecipitation assays. J Immunol Methods 170: 67–73.
- Piomelli D, Greengard P. 1991. Bidirectional control of phospholipase A2 activity by Ca++/calmodulin-dependent protein kinase II, cAMP-dependent protein kinase, and casein kinase II. Proc Natl Acad Sci USA 88: 6770–6774.
- Piomelli D, Wang JK, Sihra TS, Nairn AC, Czernik AJ, Greengard P. 1989. Inhibition of Ca2+/calmodulin-dependent protein kinase II by arachidonic acid and its metabolites. Proc Natl Acad Sci USA 86: 8550–8554.
- Provost P, Doucet J, Hommarberg T, Gerisch G, Samuelson B, Radmark O. 2001. 5-Lipoxygenase interacts with coactosin-like protein. J Biol Chem 276: 16520–16527.
- Raso E, Tovari J, Toth K, Paku S, Trikha M, Honn KV, Timar J. 2001. Ectopic alphaIIbbeta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thromb Haemost 85: 1037–1042.
- Ross BM. 2003. Phospholipid and eicosanoid signaling disturbances in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 69: 407–412.
- Ross BM, Moszczynska A, Erlich J, Kish SJ. 1998. Phospholipid-metabolizing enzymes in Alzheimer's disease: increased lysophospholipid acetyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70: 786–793.
- Ross BM, Turenne S, Moszczynska A, Warsh JJ, Kish SJ. 1999. Differential alteration of phospholipase A2 activities in brain patients with schizophrenia. Brain Res 821: 407–413.
- Seidenman KJ, Steinberg JP, Huganir RL, Malinow R. 2003. Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23: 9220–9228.
- Silva AJ, Stevens CF, Tonegawa S, Wang Y. 1992. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257: 201–206.
- Song I, Huganir RL. 2002. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25: 578–588.
- St.-Gelais F, Menard C, Congar P, Trudeau LE, Massicotte G. 2004. Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus 14: 319–325.
- Szekeres CK, Tang K, Trikha M, Honn KV. 2000. Eicosanoid activation of extracellular signal-regulated kinase1/2 in human epidermoid carcinoma cells. J Biol Chem 275: 38831–38841.
- Takuma T, Ichida T. 1997. Role of Ca2+-independent phospholipase A2 in exocytosis of amylase from parotid acinar cells. J Biochem 121: 1018–1024.
- Tocco G, Maren S, Shors T, Baudry M, Thompson RF. 1992. Long-term potentiation is associated with increased 3H-AMPA binding in rat hippocampus. Brain Res 573: 228–234.
- Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheet: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354.
- Valastro B, Girard M, Gagne JL, Martin F, Parent AT, Baudry M, Massicotte G. 2001. Inositol hexakisphosphate-mediated regulation of glutamate receptors in rat brain sections. Hippocampus 11: 673–682.
- Wang J, Kelly PT. 1996. The balance between postsynaptic Ca2+-dependent protein kinase and phosphatase activities controlling synaptic strength. Learn Mem 3: 170–181.
- Wolf MJ, Gross RW. 1996. The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2. Implications for cardiac cycle-dependent alterations in phospholipolysis. J Biol Chem 271: 20989–20992.
- Wolf MJ, Izumi Y, Zorumski CF, Gross RW. 1995. Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett 377: 358–362.
- Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA. 1999. Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem 269: 278–288.
- Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. 2002. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110: 443–455.