Halogen bonding and isostructurality in 2,4,6-tris(2-halophenoxy)-1,3,5-triazines
Binoy K. Saha
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
Search for more papers by this authorCorresponding Author
Ashwini Nangia
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
School of Chemistry, University of Hyderabad, Hyderabad 500 046, IndiaSearch for more papers by this authorBinoy K. Saha
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
Search for more papers by this authorCorresponding Author
Ashwini Nangia
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
School of Chemistry, University of Hyderabad, Hyderabad 500 046, IndiaSearch for more papers by this authorAbstract
Crystal structures of 2,4,6-tris(2-halophenoxy)-1,3,5-triazines (halo = fluoro, chloro, bromo, iodo; 2-XPOT) are discussed in the background of 3-halophenoxy (3-XPOT) and 4-halophenoxy (4-XPOT) structures. Among inter-halogen interactions, the electrostatic L-shaped type II interactions are generally shorter than the inversion-related type I geometry in 2-halo compounds. π-Stacking of triazine rings at van der Waals separation (∼3.5 Å) makes the well-known Piedfort Unit assembly and the halogen atoms form a trimer motif. 2-FPOT and 2-ClPOT are 2D isostructural but there are differences in the complete 3D molecular packing. 2-BrPOT and 2-IPOT are a 3D isostructural pair and their isomorphous unit cells have a similarity index of 0.008. The position of the halogen atom causes structural differences in 2-, 3-, and 4-XPOT compounds, with the para-series showing guest inclusion and the ortho- and meta-compounds having single-component close-packed structures. The Cambridge Structural Database is analyzed for structural mimicry upon halogen GRoup eXchange (GRX). Chloro-, bromo-, and iodo-substituted compounds of the same molecule (56 clusters) are isostructural in 30% cases, Cl/Br are identical in 66% pairs, and Br/I in 50% examples of the subdatabase. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:185–194, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20328
REFERENCES
- 1 Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, 1989; Ch. 6.
- 2(a) Sakurai, T.; Sundaralingam, M.; Jeffrey, G. A. Acta Crystallogr 1963, 16, 354–363; (b) Cox, P. J. Acta Crystallogr 2001, E57, o1203–o1205.
- 3 Bondi, A. J Phys Chem 1964, 68, 441–451.
- 4 Nyburg, S. C.; Faerman, C. H. Acta Crystallogr 1987, B43, 106–110.
- 5 Desiraju, G. R.; Parthasarathy, R. J Am Chem Soc 1989, 111, 8725–8726.
- 6 Price, S. L.; Stone, A. J.; Lucas, J.; Rowland, R. S.; Thornley, A. E. J Am Chem Soc 1994, 116, 4910–4918.
- 7 Mitchell, J. B. O.; Price, S. L. J Phys Chem A 2001, 105, 9961–9971.
- 8 Day, G. M.; Price, S. L. J Am Chem Soc 2003, 125, 16434–16443.
- 9 Pogliani, L. New J Chem 2003, 27, 919–927.
- 10 Pedireddi, V. R.; Reddy, D. S.; Goud, B. S.; Craig, D. C.; Rae, A. D.; Desiraju, G. R. J Chem Soc Perkin Trans 2, 1994, 2353–2360.
- 11 Freytag, M.; Jones, P. G.; Ahrens, B.; Fischer, A. K. New J Chem 1999, 23, 1137–1139.
- 12 Zordan, F.; Brammer, L.; Sherwood, P. J Am Chem Soc 2005, 127, 5979–5989.
- 13 Espallargas, G. M.; Brammer, L.; Sherwood, P. Angew Chem Int Ed 2006, 45, 435–440.
- 14 Reddy, C. M.; Kirchner, M. T.; Gundakaram, R. C.; Padmanavan, K. A.; Desiraju, G. R. Chem Eur J 2006, 12, 2222–2234.
- 15 Prout, C. K.; Kamenar, B. Molecular Complexes; Elek Science: London, 1973; Vol. 1.
- 16 Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc Chem Res 2005, 38, 386–395.
- 17 Caronna, T.; Liantonio, R.; Logothetis, T. A.; Metrangolo, P.; Pilati, T.; Resnati, G. J Am Chem Soc 2004, 126, 4500–4501.
- 18
Corradi, E.;
Meille, S. V.;
Messina, M. T.;
Metrangolo, P.;
Resnati, G.
Angew Chem Int Ed
2000, 39, 1782–1786.
10.1002/(SICI)1521-3773(20000515)39:10<1782::AID-ANIE1782>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 19 George, S.; Nangia, A.; Lam, C.-K.; Mak, T. C. W.; Nicoud, J.-F. Chem Commun 2004, 1202–1203.
- 20 Saha, B. K.; Nangia, A.; Jaskólski, M. Cryst Eng Commun 2005, 7, 355–358.
- 21 Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc Natl Acad Sci USA 2004, 101, 16789–16794.
- 22 Jetti, R. K. R.; Xue, F.; Mak, T. C. W.; Nangia, A. Cryst Eng 1999, 2, 215–224.
- 23 Jetti, R. K. R.; Thallapally, P. K.; Xue, F.; Mak, T. C. W.; Nangia, A. Tetrahedron 2000, 56, 6707–6719.
- 24 Jetti, R. K. R.; Nangia, A.; Xue, F.; Mak, T. C. W. Chem Commun 2001, 919–920.
- 25 Broder, C. K.; Howard, J. A. K. H.; Keen, D. A.; Wilson, C. C.; Allen, F. H.; Jetti, R. K. R.; Nangia, A.; Desiraju, G. R. Acta Crystallogr 2000, B56, 1080–1084.
- 26 Jetti, R. K. R.; Thallapally, P. K.; Nangia, A.; Lam, C.-K.; Mak, T. C. W. Chem Commun 2002, 952–953.
- 27 Saha, B. K.; Jetti, R. K. R.; Reddy, L. S.; Aitipamula, S.; Nangia, A. Cryst Growth Des 2005, 5, 887–899.
- 28 Thalladi, V. R.; Brasselet, S.; Weiss, H.-C.; Blaser, D.; Katz, A. K.; Carrell, H. L.; Boese, R.; Zyss, J.; Nangia, A.; Desiraju, G. R. J Am Chem Soc 1998, 120, 2563–2577.
- 29 Saha, B. K.; Aitipamula, S.; Banerjee, R.; Nangia, A.; Jetti, R. K. R.; Boese, R.; Lam, C.-K.; Mak, T. C. Mol Cryst Liq Cryst 2005, 440, 295–316.
- 30 Jessiman, A. S.; MacNicol, D. D.; Malinson, P. R.; Vallance, I. J Chem Soc Chem Commun 1990, 1619–1621.
- 31 Fábián, L.; Bombicz, P.; Czugler, M.; Kálmán, A.; Weber, E.; Hecker, M. Supramol Chem 1999, 11, 151–167.
- 32 Czugler, M.; Weber, E.; Párkányi, L.; Korkas, P. P.; Bombicz, P. Chem Eur J 2003, 9, 3741–3747.
- 33 Choudhury, A. R.; Guru Row, T. N. Cryst Growth Des 2003, 4, 47–52.
- 34 Anthony, A.; Jaskólski, M.; Nangia, A.; Desiraju, G. R. Chem Commun 1998, 2537–2538.
- 35 Anthony, A.; Jaskólski, M.; Nangia, A. Acta Crystallogr 2000, B56, 512–525.
- 36 Babu, N. J.; Nangia, A. Cryst Growth Des 2006, 6, 1753–1756.
- 37 Fábián, L.; Kálmán, A. Acta Crystallogr 2004, B60, 547–558.
- 38 Fábián, L.; Kálmán, A. Acta Crystallogr 1999, B55, 1099–1108.
- 39 Reichenbächer, K.; Süss, H. I.; Stoeckli-Evans, H.; Bracco, S.; Sozzani, P.; Weber, E.; Hulliger, J. New J Chem 2004, 28, 393–397.
- 40 Chisholm, J.; Pidcock, E.; van de Streek, J.; Infantes, L.; Motherwell, S.; Allen, F. H. Cryst Eng Commun 2006, 8, 11–28.
- 41 Kitaigorodskii, A. I. Organic Chemical Crystallography; Consultants Bureau: New York, 1961; Ch. 4.
- 42 Saha, B. K.; Nangia, A.; Nicoud, J.-F. Cryst Growth Des 2006, 6, 1278–1281.
- 43 Hundt, R.; Schön, J. C.; Jansen, M. J. Appl Crystallogr 2006, 39, 6–16.
- 44
Báthori, N.;
Bihátsi, L.;
Czugler, M.;
Bombicz, P.
Acta Crystallogr
2005, A61, C282–C283.
10.1107/S0108767305087969 Google Scholar
- 45
Kálmán, A.
Acta Crystallogr
2005, A61, C284.
10.1107/S0108767305087891 Google Scholar
- 46 Kálmán, A. Acta Crystallogr 2005, B61, 536–547.
- 47 Roy, S.; Banerjee, R.; Nangia, A.; Kruger, G. J. Chem Eur J 2006, 12, 3777–3788.
- 48 Nichol, G. S.; Clegg, W. Cryst Growth Des 2006, 6, 451–460.
- 49 Chandran, S. K.; Nangia, A. Cryst Eng Commun 2006, 8, 581–586.
- 50 SHELXS-97, SHELXL-97: Sheldrick, G. M. Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.