Interfacial photothermal water evaporator based on nanoporous microwave-expanded graphite and coconut waste fibers@recycled polystyrene as substrate
Corresponding Author
Víctor M. Ovando-Medina
Ingeniería Química, COARA – UASLP, San Luis Potosí, Mexico
Correspondence
Víctor M. Ovando-Medina and Alondra G. Escobar-Villanueva, Ingeniería Química, COARA – UASLP. Carretera a Cedral KM 5+600, San José de las Trojes, Matehuala, San Luis Potosí, México 78700.
Email: [email protected] (V. M. O.) and [email protected] (A. G. E.)
Search for more papers by this authorCorresponding Author
Alondra G. Escobar-Villanueva
Ingeniería Química, COARA – UASLP, San Luis Potosí, Mexico
Correspondence
Víctor M. Ovando-Medina and Alondra G. Escobar-Villanueva, Ingeniería Química, COARA – UASLP. Carretera a Cedral KM 5+600, San José de las Trojes, Matehuala, San Luis Potosí, México 78700.
Email: [email protected] (V. M. O.) and [email protected] (A. G. E.)
Search for more papers by this authorHugo Martínez-Gutiérrez
Instituto Politécnico Nacional (IPN), Centro de Nanociencias y Micro y Nanotecnologías, Mexico City, Mexico
Search for more papers by this authorOmar González-Ortega
Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
Search for more papers by this authorCorresponding Author
Víctor M. Ovando-Medina
Ingeniería Química, COARA – UASLP, San Luis Potosí, Mexico
Correspondence
Víctor M. Ovando-Medina and Alondra G. Escobar-Villanueva, Ingeniería Química, COARA – UASLP. Carretera a Cedral KM 5+600, San José de las Trojes, Matehuala, San Luis Potosí, México 78700.
Email: [email protected] (V. M. O.) and [email protected] (A. G. E.)
Search for more papers by this authorCorresponding Author
Alondra G. Escobar-Villanueva
Ingeniería Química, COARA – UASLP, San Luis Potosí, Mexico
Correspondence
Víctor M. Ovando-Medina and Alondra G. Escobar-Villanueva, Ingeniería Química, COARA – UASLP. Carretera a Cedral KM 5+600, San José de las Trojes, Matehuala, San Luis Potosí, México 78700.
Email: [email protected] (V. M. O.) and [email protected] (A. G. E.)
Search for more papers by this authorHugo Martínez-Gutiérrez
Instituto Politécnico Nacional (IPN), Centro de Nanociencias y Micro y Nanotecnologías, Mexico City, Mexico
Search for more papers by this authorOmar González-Ortega
Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
Search for more papers by this authorSummary
Solar water evaporators (SWE) have shown growing interest due to their capacity to transform sunlight to thermal energy. In this work, SWE were prepared based on microwave-expanded graphite as light absorber deposited onto an ecological porous substrate obtained by casting a mixture of coconut fibers and recycled polystyrene. The materials were characterized by SEM, FTIR and UV/Vis-NIR spectroscopies, and thermogravimetric analyses. It was observed that the light absorber film presented high and wide light absorption in the solar electromagnetic spectrum and increased superficial area when compared to the unexpanded graphite film counterpart. Nanopores between 400 and 900 nm and microcavities in the 200 to 500 μm range were formed at the surface of the SWE after 6 seconds of microwave exposure, which are destroyed at higher exposure times. SWE of laboratory scale diameter were tested for water evaporation at different light intensities, microwave expanding time, and thicknesses to determine their effects on evaporation rate and efficiency. It was observed that SWE rates increased from 1.09 ± 0.006 to 1.73 ± 0.007 kg h−1 m−2 for unexpanded and expanded graphite through 6 seconds, respectively; being the latter the best SWE reaching 91.5% of efficiency at 1200 W m−2 of illumination. This efficiency was stable after reaching the maximum stable efficiency in only 15 minutes. The scaling-up of the process was studied in a SWE of 6.1 cm in diameter using a bigger glass cell in the presence of pure water or simulated seawater (3.5% NaCl), achieving efficiencies of 89.8% and 86.1%, respectively.
CONFLICT OF INTEREST
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Supporting Information
Filename | Description |
---|---|
er5773-sup-0001-supinfo.docxWord 2007 document , 5.1 MB | Appendix S1: Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Schyns JF, Hoekstra AY, Booij MJ, Hogeboom RJ, Mekonnen MM. Limits to the world's green water resources for food, feed, fiber, timber, and bioenergy. Proc Natl Acad Sci U S A. 2019; 116: 4893-4898. https://doi.org/10.1073/pnas.1817380116.
- 2Padrón RS, Gudmundsson L, Seneviratne SI. Observational constraints reduce likelihood of extreme changes in multidecadal land water availability. Geophys Res Lett. 2019; 46: 736-744. https://doi.org/10.1029/2018GL080521.
- 3Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marĩas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature. 2008; 452: 301-310. https://doi.org/10.1038/nature06599.
- 4Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH. Solar energy: potential and future prospects. Renew Sustain Energy Rev. 2018; 82: 894-900. https://doi.org/10.1016/j.rser.2017.09.094.
- 5Gao M, Zhu L, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energ Environ Sci. 2019; 12: 841-864. https://doi.org/10.1039/c8ee01146j.
- 6Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photonics. 2016; 10: 393-398. https://doi.org/10.1038/nphoton.2016.75.
- 7Chang C, Yang C, Liu Y, et al. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl Mater Interfaces. 2016; 8: 23412-23418. https://doi.org/10.1021/acsami.6b08077.
- 8Zielinski MS, Choi JW, La Grange T, et al. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 2016; 16: 2159-2167. https://doi.org/10.1021/acs.nanolett.5b03901.
- 9Zhu M, Li Y, Chen F, et al. Plasmonic wood for high-efficiency solar steam generation. Adv Energy Mater. 2018; 8: 1701028. https://doi.org/10.1002/aenm.201701028.
- 10Zhu G, Xu J, Zhao W, Huang F. Constructing black titania with unique nanocage structure for solar desalination. ACS Appl Mater Interfaces. 2016; 8: 31716-31721. https://doi.org/10.1021/acsami.6b11466.
- 11Zeng Y, Yao J, Horri BA, et al. Solar evaporation enhancement using floating light-absorbing magnetic particles. Energ Environ Sci. 2011; 4: 4074. https://doi.org/10.1039/c1ee01532j.
- 12Chen R, Wu Z, Zhang T, Yu T, Ye M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Adv. 2017; 7: 19849-19855. https://doi.org/10.1039/c7ra03007j.
- 13Wang X, Ou G, Wang N, Wu H. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl Mater Interfaces. 2016; 8: 9194-9199. https://doi.org/10.1021/acsami.6b02071.
- 14Zhang R, Qu J, Tian M, Han X, Wang Q. Efficiency improvement of a solar direct volumetric receiver utilizing aqueous suspensions of CuO. Int J Energy Res. 2018; 42: 2456-2464. https://doi.org/10.1002/er.4028.
- 15Liu H, Zhang X, Hong Z, et al. A bioinspired capillary-driven pump for solar vapor generation. Nano Energy. 2017; 42: 115-121. https://doi.org/10.1016/j.nanoen.2017.10.039.
- 16Ding D, Huang W, Song C, Yan M, Guo C, Liu S. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chem Commun. 2017; 53: 6744-6747. https://doi.org/10.1039/c7cc01427a.
- 17Wang Y, Zhang L, Wang P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustain Chem Eng. 2016; 4: 1223-1230. https://doi.org/10.1021/acssuschemeng.5b01274.
- 18Shi L, Wang Y, Zhang L, Wang P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J Mater Chem A. 2017; 5: 16212-16219. https://doi.org/10.1039/c6ta09810j.
- 19Liu Z, Song H, Ji D, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Glob Challenges. 2017; 1: 1600003. https://doi.org/10.1002/gch2.201600003.
- 20Chen Q, Pei Z, Xu Y, et al. A durable monolithic polymer foam for efficient solar steam generation. Chem Sci. 2018; 9: 623-628. https://doi.org/10.1039/c7sc02967e.
- 21Sajadi SM, Farokhnia N, Irajizad P, Hasnain M, Ghasemi H. Flexible artificially-networked structure for ambient/high pressure solar steam generation. J Mater Chem A. 2016; 4: 4700-4705. https://doi.org/10.1039/c6ta01205a.
- 22Ghasemi H, Ni G, Marconnet AM, et al. Solar steam generation by heat localization. Nat Commun. 2014; 5: 4449. https://doi.org/10.1038/ncomms5449.
- 23Yang M, Zhang M, Kunioka M, et al. Photothermal conversion of carbon nanohorns enhancing caprolactone polymerization. Carbon N Y. 2015; 83: 15-20. https://doi.org/10.1016/j.carbon.2014.11.022.
- 24Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy. 2017; 41: 269-284. https://doi.org/10.1016/j.nanoen.2017.09.005.
- 25Liu Y, Chen J, Guo D, Cao M, Jiang L. Floatable, self-cleaning, and carbon-black-based Superhydrophobic gauze for the solar evaporation enhancement at the air-water Interface. ACS Appl Mater Interfaces. 2015; 7: 13645-13652. https://doi.org/10.1021/acsami.5b03435.
- 26Liu Y, Yu S, Feng R, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv Mater. 2015; 27: 2768-2774. https://doi.org/10.1002/adma.201500135.
- 27Jiang Q, Tian L, Liu KK, et al. Bilayered biofoam for highly efficient solar steam generation. Adv Mater. 2016; 28: 9400-9407. https://doi.org/10.1002/adma.201601819.
- 28Zhang Y, Cao S, Qiu Z, et al. In situ chemo-polymerized polypyrrole-coated filter paper for high-efficient solar vapor generation. Int J Energy Res. 2020; 44: 1191-1204. https://doi.org/10.1002/er.5012.
- 29Liu KK, Jiang Q, Tadepalli S, et al. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl Mater Interfaces. 2017; 9: 7675-7681. https://doi.org/10.1021/acsami.7b01307.
- 30Naizhen C, Wanci S, Shizhu W, Yingjie L. Application of expanded & graphite adsorption material to environmental protection. Environ Eng. 1996; 14(3): 27-30. http://en.cnki.com.cn/Article_en/CJFDTotal-HJGC603.007.htm.
- 31Kang F, Zheng YP, Wang HN, Nishi Y, Inagaki M. Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon N Y. 2002; 40: 1575-1581. https://doi.org/10.1016/S0008-6223(02)00023-4.
- 32Wei T, Fan Z, Luo G, Zheng C, Xie D. A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon N Y. 2009; 47: 337-339. https://doi.org/10.1016/j.carbon.2008.10.013.
- 33Zhao Q, Cheng X, Wu J, Yu X. Sulfur-free exfoliated graphite with large exfoliated volume: preparation, characterization and its adsorption performance. J Ind Eng Chem. 2014; 20: 4028-4032. https://doi.org/10.1016/j.jiec.2014.01.002.
- 34Zhang F, Zhao Q, Yan X, et al. Rapid preparation of expanded graphite by microwave irradiation for the extraction of triazine herbicides in milk samples. Food Chem. 2016; 197: 943-949. https://doi.org/10.1016/j.foodchem.2015.11.056.
- 35Hoang NB, Nguyen TT, Nguyen TS, Bui TPQ, Bach LG. The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution. Cogent Eng. 2019; 6: 1584939. https://doi.org/10.1080/23311916.2019.1584939.
- 36Bodîrlaˇu R, Teacaˇ CA. Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Rom Journ Phys. 2009; 54: 93-104.
- 37Abraham E, Deepa B, Pothen LA, et al. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym. 2013; 92: 1477-1483. https://doi.org/10.1016/j.carbpol.2012.10.056.
- 38Tao F, Zhang Y, Wang B, et al. Graphite powder/semipermeable collodion membrane composite for water evaporation. Sol Energy Mater Sol Cells. 2018; 180: 34-45. https://doi.org/10.1016/j.solmat.2018.02.014.
- 39Subramani M, Sepperumal U. FTIR analysis of bacterial mediated chemical changes in polystyrene foam. Ann Biol Res. 2016; 7(5): 55-61. https://www.scholarsresearchlibrary.com/articles/ftir-analysis-of-bacterial-mediated-chemical-changes-in-polystyrene-foam.pdf.
- 40Calles-Arriaga CA, López-Hernández J, Hernández-Ordoñez M, Echavarría-Solís RA, Ovando-Medina VM. Thermal characterization of microwave assisted foaming of expandable polystyrene. Ing Investig Tecnol. 2016; 17: 15-21. https://doi.org/10.1016/j.riit.2016.01.002.
- 41Zhu M, Yu J, Ma C, Zhang C, Wu D, Zhu H. Carbonized daikon for high efficient solar steam generation. Sol Energy Mater Sol Cells. 2019; 191: 83-90. https://doi.org/10.1016/j.solmat.2018.11.015.
- 42Zhou L, Li X, Ni GW, Zhu S, Zhu J. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci Rev. 2019; 6: 562-578. https://doi.org/10.1093/nsr/nwz030.
- 43Han X, Zang L, Zhang S, et al. Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination. RSC Adv. 2020; 10: 2507-2512. https://doi.org/10.1039/c9ra09667a.
- 44Xue G, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl Mater Interfaces. 2017; 9: 15052-15057. https://doi.org/10.1021/acsami.7b01992.
- 45Li T, Liu H, Zhao X, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv Funct Mater. 2018; 28: 1707134. https://doi.org/10.1002/adfm.201707134.
- 46Tao F, Valenzuela Garcia A, Xiao T, Zhang Y, Yin Y, Chen X. Interfacial solar vapor generation: introducing students to experimental procedures and analysis for efficiently harvesting energy and generating vapor at the air-water Interface. J Chem Educ. 2020; 97: 1093-1100. https://doi.org/10.1021/acs.jchemed.9b00643.
- 47Tao F, Green M, Garcia AV, et al. Recent progress of nanostructured interfacial solar vapor generators. Appl Mater Today. 2019; 17: 45-84. https://doi.org/10.1016/j.apmt.2019.07.011.
- 48Zhang Y, Tao F, Cao S, et al. Hierarchical K2Mn4O8 nanoflowers: a novel photothermal conversion material for efficient solar vapor generation. Sol Energy Mater Sol Cells. 2019; 200:110043. https://doi.org/10.1016/j.solmat.2019.110043.
- 49Tao F, Zhang Y, Yin K, et al. A plasmonic interfacial evaporator for high-efficiency solar vapor generation. Sustain Energy Fuels. 2018; 2: 2762-2769. https://doi.org/10.1039/c8se00402a.
- 50Tao F, Zhang Y, Yin K, et al. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation. ACS Appl Mater Interfaces. 2018; 10: 35154-35163. https://doi.org/10.1021/acsami.8b11786.
- 51Tao F, Zhang Y, Cao S, et al. CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation. Mater Today Energy. 2018; 9: 285-294. https://doi.org/10.1016/j.mtener.2018.06.003.
- 52Wu X, Chen GY, Owens G, Chu D, Xu H. Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy. Mater Today Energy. 2019; 12: 277-296. https://doi.org/10.1016/j.mtener.2019.02.001.
- 53Hong Z, Pei J, Wang Y, et al. Characteristics of the direct absorption solar collectors based on reduced graphene oxide nanofluids in solar steam evaporation. Energ Convers Manage. 2019; 199:112019. https://doi.org/10.1016/j.enconman.2019.112019.
- 54Huang L, Jiang H, Wang Y, et al. Enhanced water yield of solar desalination by thermal concentrated multistage distiller. Desalination. 2020; 477:114260. https://doi.org/10.1016/j.desal.2019.114260.
- 55Jang GG, Klett JW, McFarlane J, et al. Efficient solar-thermal distillation desalination device by light absorptive carbon composite porous foam. Glob Challenges. 2019; 3:1900003. https://doi.org/10.1002/gch2.201900003.
- 56Peng G, Ding H, Sharshir SW, et al. Low-cost high-efficiency solar steam generator by combining thin film evaporation and heat localization: both experimental and theoretical study. Appl Therm Eng. 2018; 143: 1079-1084. https://doi.org/10.1016/j.applthermaleng.2018.08.004.
- 57Huang L, Pei J, Jiang H, Hu X. Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination. 2018; 442: 1-7. https://doi.org/10.1016/j.desal.2018.05.006.