Electrochemical properties of the CaNi5−xMnx electrodes synthesized by mechanical alloying
Corresponding Author
Chokri Khaldi
Université de Tunis, ENSIT, Tunis, Tunisia
Correspondence
Chokri Khaldi, Université de Tunis, ENSIT, LR99ES05, 1008 Montfleury, Tunisia.
Email: [email protected]
Search for more papers by this authorNouredine Fenineche
ICB-PMDM/FR FCLAB, UTBM, UBFC, Belfort, France
Search for more papers by this authorCorresponding Author
Chokri Khaldi
Université de Tunis, ENSIT, Tunis, Tunisia
Correspondence
Chokri Khaldi, Université de Tunis, ENSIT, LR99ES05, 1008 Montfleury, Tunisia.
Email: [email protected]
Search for more papers by this authorNouredine Fenineche
ICB-PMDM/FR FCLAB, UTBM, UBFC, Belfort, France
Search for more papers by this authorSummary
In this article, we exhaustively examined the effects of Mn substitution for Ni on the structures and electrochemical characterization of the CaNi5−xMnx (x = 0.2, 0.3, 0.5, 1) alloys prepared by mechanical synthesis for 40 hours at ball to powder weight ratio of 8:1. The characterization of electrodes was examined by X-ray diffraction, scanning electron microscope and electrochemical tests. In this context, the structural properties for each alloy have two major phases Ni, Ca2Ni7; Ni, CaNi3; Ni, CaNi5; Ni, CaNi3 where x = 0.2, 0.3, 0.5 and 1 respectively. The powder micrograph shows the existence of agglomerates has average particle size between 22 and 35 μm. In addition, the quantification by energy dispersive spectroscopy has been indicated the chemical composition of the all produced alloys is near their nominal composition. All electrodes are activated during the first cycle, independent of the Mn substitution rate. The highest values of discharge capacity and reversibility are obtained for x = 0.3 (125 mAh g−1, 0.17 V) and x = 0.5 (119 mAh g−1, 0.19 V) despite their low cycle stability. The evolution of DH/a2 ratio and the I0 exchange current density for the different Mn substitution rates is in accordance with that of the evolution of discharge capacities. The better kinetic properties is observed for x = 0.5 during electrochemical cycling.
REFERENCES
- 1Liu Y, Pan H, Gao M, Wang Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem. 2011; 21: 4743-4755. https://doi.org/10.1039/C0JM01921F.
- 2Ouyang L, Huang J, Wang H, Liu J, Zhu M. Progress of hydrogen storage alloys for NiMH rechargeable power batteries in electric vehicles: a review. Mater Chem Phys. 2017; 200: 164-178. https://doi.org/10.1016/j.matchemphys.2017.07.002.
- 3Miao H, Liu Y, Lin Y, Zhu D, Jiang L, Pan H. A study on the microstructures and electrochemical properties of La0.7Mg0.3Ni2.45-xCrxCo0.75Mn0.1Al0.2 (x= 0, 0.20) hydrogen storage electrode alloys. Int J Hydrogen Energy. 2008; 33: 134-140. https://doi.org/10.1016/j.ijhydene.2007.09.019.
- 4Ying TK, Gao XP, Hu WK, Wu F, Noréus D. Studies in rechargeable Ni-MH batteries. Int J Hydrogen Energy. 2006; 31: 525-530. https://doi.org/10.1016/j.ijhydene.2005.04.018.
- 5Yasuoka S, Magari Y, Murata T, et al. Development of high-capacity nickel-metal hydride batteries using super lattice hydrogen-absorbing alloys. J Power Sources. 2006; 156(2): 662-666. https://doi.org/10.1016/j.jpowsour.2005.05.054.
- 6Taniguchi A, Fujioka N, Ikoma M, Ohta A. Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources. 2001; 100(1–2): 117-124. https://doi.org/10.1016/S0378-7753(01)00889-8.
- 7Sakai T, Oguro K, Miyamura H, et al. Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries. J less Common Met. 1990; 161(2): 193-202. https://doi.org/10.1016/0022-5088(90)90027-H.
- 8Johnson JR. Reaction of hydrogen with the high temperature (C14) form of TiCr2. J Less Common Met. 1980; 73(2): 345-354. https://doi.org/10.1016/0022-5088(80)90328-8.
- 9Cuevas F, Joubert J-M, Latroche M, Percheron-Guegan A. Intermetallic compounds as negative electrodes of Ni/MH batteries. Appl Phys A. 2001; 72: 225-238. https://doi.org/10.1007/s003390100775.
- 10Van Vucht JHN, Kuijpers FA, Bruning HCAM. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep. 1970; 25: 133-140.
- 11Gupta M. Electronic properties of LaNi5 and LaNi5H7. J Less Common Met. 1987; 130: 219-228. https://doi.org/10.1016/0022-5088(87)90113-5.
- 12Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A. Electrochemical study of cobalt-free AB5-type hydrogen storage alloys. Int J Hydrogen Energ. 2004; 29(3): 307-311. https://doi.org/10.1016/S0360-3199(03)00157-5.
- 13Khaldi C, Boussami S, Rejeb BB, Mathlouthi H, Lamloumi J. Corrosion effect on the electrochemical properties of LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Fe0.75 negative electrodes used in Ni–MH batteries. Mater Sci Eng B. 2010; 175(1): 22-28. https://doi.org/10.1016/j.mseb.2010.06.007.
- 14Dabaki Y, Boussami S, Khaldi C, et al. The effect of ZnO addition on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.2Fe0.55 electrode used in nickel–metal hydride batteries. J Solid State Electrochem. 2017; 21(4): 1157-1164. https://doi.org/10.1007/s10008-016-3458-2.
- 15Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A. Effect of partial substitution of co with Fe on the properties of LaNi3.55Mn0.4Al0.3Co0.75-xFex (x= 0, 0.15, 0.55) alloys electrodes. J Alloys Compd. 2003; 360(1–2): 266-271. https://doi.org/10.1016/S0925-8388(03)00336-0.
- 16Moussa MB, Abdellaoui M, Lamloumi J, Guegan AP. Investigation on the structure, thermodynamic and electrochemical properties of the MmNi3.55Mn0.4Al0.3Fe0.75 compound used as negative electrode in Ni–MH batteries. J Alloys Compd. 2013; 575: 414-418. https://doi.org/10.1016/j.jallcom.2013.05.180.
- 17Percheron-Guégan A, Lartigue C, Achard JC, Germi P, Tasset F. Neutron and X-ray diffraction profile analyses and structure of LaNi5, LaNi5-xAlx and LaNi5-xMnx intermetallics and their hydrides (deuterides). J Less Common Met. 1980; 74(1): 1-12. https://doi.org/10.1016/0022-5088(80)90063-6.
- 18Westlake DG. A geometric model for the stoichiometry and interstitial site occupancy in hydrides (deuterides) of LaNi5, LaNi4Al and LaNi4Mn. J Less Common Met. 1983; 91(2): 275-292. https://doi.org/10.1016/0022-5088(83)90322-3.
- 19Mendelsohn MH, Gruen DM, Dwight AE. The effect of aluminum additions on the structural and hydrogen absorption properties of AB5 alloys with particular reference to the LaNi5-xAlx ternary alloy system. J Less Common Met. 1979; 63(2): 193-207. https://doi.org/10.1016/0022-5088(79)90243-1.
- 20Latroche M, Rodriguez-Carvajal J, Percheron-Guégan A, Bourée-Vigneron F. Structural studies of LaNi4CoD6.11 and LaNi3.55Mn0.4Al0.3Co0.75D5.57 by means of neutron powder diffraction. J Alloys Compd. 1995; 218(1): 64-72. https://doi.org/10.1016/0925-8388(94)01366-7.
- 21Ratnakumar BV, Witham C, Bowman RC, Hightower A, Fultz B. Electrochemical studies on LaNi5-xSnx metal hydride alloys. J Electrochem Soc. 1996; 143(8): 2578-2584. https://doi.org/10.1149/1.1837050.
- 22Li ZP, Suda S. A new family of hydride electrode materials based on CaNi5-type alloys. J Alloys Compd. 1995; 231(1–2): 751-754. https://doi.org/10.1016/0925-8388(95)01712-7.
- 23Bawa MS, Ziem EA. Long-term testing and stability of CaNi5 alloy for a hydrogen storage application. Int J Hydrogen Energy. 1982; 7(10): 775-781. https://doi.org/10.1016/0360-3199(82)90067-2.
- 24Chumphongphan S, Paskevicius M, Sheppard DA, Buckley CE. Cycle life and hydrogen storage properties of mechanical alloyed Ca1-xZrxNi5-yCry;(x= 0, 0.05 and y= 0, 0.1). Int J Hydrogen Energy. 2012; 37(9): 7586-7593. https://doi.org/10.1016/j.ijhydene.2012.01.131.
- 25Oesterreicher H, Ensslen K, Kerlin A, Bucher E. Hydriding behavior in ca/1bMg/1bNi/1bB. Mater Res Bull. 1980; 15(2): 275-283. https://doi.org/10.1016/0025-5408(80)90130-0.
- 26Yeh MT, Beibutian VM, Hsu SE. Effect of Mo additive on hydrogen absorption of rare-earth based hydrogen storage alloy. J Alloys Compd. 1999; 293: 721-723. https://doi.org/10.1016/S0925-8388(99)00344-8.
- 27Li ZP, Suda S. Effects of hydriding-dehydriding cycling on PCT and electrochemical properties of LaCaNiAl alloys. J Alloys Compd. 1995; 231(1–2): 594-597. https://doi.org/10.1016/0925-8388(95)01734-8.
- 28Özgen C. Production and characterization of CaNi5-xMx compounds for metal hydride batteries (Doctoral dissertation). Middle East Technical University; 2012.
- 29Sandrock GD, Murray JJ, Post ML, Taylor JB. Hydrides and deuterides of CaNi5. Mater Res Bull. 1982; 17(7): 887-894. https://doi.org/10.1016/0025-5408(82)90008-3.
- 30Liang G, Huot J, Schulz R. Mechanical alloying and hydrogen storage properties of CaNi5-based alloys. J Alloys Compd. 2001; 321(1): 146-150. https://doi.org/10.1016/S0925-8388(01)01010-6.
- 31Kumar MS, Viswanathan B, Swamy CS, Srinivasan V. High temperature interaction of hydrogen with intermetallic compound CaNi5. Mater Chem Phys. 1988; 20(3): 245-253. https://doi.org/10.1016/0254-0584(88)90064-8.
- 32Shillito R, Fenstermaker L. Soil stabilization methods with potential for application at the nevada national security site: a literature review (no. DOE 45255 DOE/NV/0000939-17). Desert Research Institute, Nevada university, Reno, NV (United States); Desert Research Institute (DRI), Nevada System of Higher Education, Reno, NV (United States); 2014.
- 33Liang G, Schulz R. Phase structures and hydrogen storage properties of ca–mg–Ni alloys prepared by mechanical alloying. J Alloys Compd. 2003; 356: 612-616. https://doi.org/10.1016/S0925-8388(02)01285-9.
- 34Goodell PD. Stability of rechargeable hydriding alloys during extended cycling. J Less Common Met. 1984; 99(1): 1-14. https://doi.org/10.1016/0022-5088(84)90330-8.
- 35Wang XL, Zhang YH, Zhao DL, Dong XP, Guo SH, Wang GQ. Effects of Cr addition on the microstructures and electrochemical performances of La–mg–Ni system (PuNi3-type) hydrogen storage alloy. J Alloys Compd. 2007; 446: 625-629. https://doi.org/10.1016/j.jallcom.2007.01.062.
- 36Zang JH, Zhang QA, Sun DL. Hydrogen storage performances of RCaMgNi9 (R = Nd, Gd and Er) compounds. J Alloys Compd. 2019; 794: 45-52. https://doi.org/10.1016/j.jallcom.2019.04.236.
- 37Zang JH, Zhang QA, Sun DL. Effect of half substitution of R (R = Nd, Gd and Er) for ca on crystal structure and hydrogen storage properties of CaMgNi4. J Alloys Compd. 2019; 771: 711-720. https://doi.org/10.1016/j.jallcom.2018.09.009.
- 38Si TZ, Zhao GP, Zhang QA. Phase structures and electrochemical properties of Ca0.4Mg0.6(Ni0.9Al0.05M0.05)2(M= cu, Mn, Cr or co) alloys. Inter J. Hydrogen Energy. 2007; 32(5): 600-605. https://doi.org/10.1016/j.ijhydene.2006.06.062.
- 39Li ZP, Suda S. Electrochemical durability of ca-based alloys. Electrochim Acta. 1995; 40(4): 467-471. https://doi.org/10.1016/0013-4686(94)00292-9.
- 40Jensen JO, Bjerrum NJ. Systematic B-metal substitution in CaNi5. J Alloys Compd. 1999; 293: 185-189. https://doi.org/10.1016/S0925-8388(99)00418-1.
- 41Chumphongphan S, Paskevicius M, Sheppard DA, Buckley CE. Effect of Al and Mo substitution on the structural and hydrogen storage properties of CaNi5. Int J Hydrogen Energ. 2013; 38(5): 2325-2331. https://doi.org/10.1016/j.ijhydene.2012.11.107.
- 42Dabaki Y, Khaldi C, Fenineche N, ElKedim O, Tliha M, Lamloumi J. Electrochemical studies on the ca-based hydrogen storage alloy for different milling times. Metals Mater Int. 2019. https://doi.org/10.1007/s12540-019-00496-9.
- 43Li CJ, Wang FR, Cheng WH, Li W, Zhao WT. The influence of high-rate quenching on the cycle stability and the structure of the AB5-type hydrogen storage alloys with different co content. J Alloys Compd. 2001; 315(1–2): 218-223. https://doi.org/10.1016/S0925-8388(00)01282-2.
- 44Ayari M. Thèse d'Université, Paris 12; 2003.
- 45Mathlouthi H, Lamloumi J, Latroche M, Percheron-Guégan A. Study of poly-substituted intermetallic hydrides electrochemical applications; etude des alliages polysubstitues des hydrures metalliques. application electrochimique. Ann Chim Sci Mat. 1997; 22(3–4): 241-244.
- 46Khaldi C. Thèse d'Université, Faculté des Sciences de Tunis; 2004.
- 47Kaabi A, Khaldi C, Lamloumi J. Thermodynamic and kinetic parameters and high rate discharge-ability of the AB5-type metal hydride anode. Int J Hydrogen Energy. 2016; 41(23): 9914-9923. https://doi.org/10.1016/j.ijhydene.2016.03.128.
- 48Chebab S. Elaboration et caractérisation de composés hydrurables types AB3 (A: terre rares, B: métal 3d) pour le stockage et la conversion d'hydrogène Thèse d'Université Paris-Est; 2017.
- 49Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001; 46(1–2): 1-184. https://doi.org/10.1016/S0079-6425(99)00010-9.
- 50Suryanarayana C, Ivanov E, Boldyrev VV. The science and technology of mechanical alloying. Mat Sci Eng A. 2001; 304: 151-158. https://doi.org/10.1016/S0921-5093(00)01465-9.
- 51Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967; 22(1): 151-152. https://doi.org/10.1107/S0365110X67000234.
- 52Li XD, Elkedim O, Nowak M, Jurczyk M, Chassagnon R. Structural characterization and electrochemical hydrogen storage properties of Ti2-xZrxNi (x= 0, 0.1, 0.2) alloys prepared by mechanical alloying. Int J Hydrogen Energ. 2013; 38(27): 12126-12132. https://doi.org/10.1016/j.ijhydene.2013.03.098.
- 53Abdellaoui M, Gaffet E. A mathematical and experimental dynamical phase diagram for ball-milled Ni10Zr7. J Alloys Compd. 1994; 209(1–2): 351-361. https://doi.org/10.1016/0925-8388(94)91124-X.
- 54Abdellaoui M, Gaffet E. The physics of mechanical alloying in a planetary ball mill: mathematical treatment. Acta Metall Mater. 1995; 43(3): 1087-1098. https://doi.org/10.1016/0956-7151(95)92625-7.
- 55Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A. Electrochemical studies on the effect of cobalt substitution by iron in LaNi3.55Mn0.4Al0.3Co0.75 alloys. Phys Chem News. 2006; 29: 76-80.
- 56Belgacem YB, Khaldi C, Lamloumi J, Takenouti H. Effect of the discharge rate on the electrochemical properties of LaY2Ni9 hydrogen storage alloy. J Alloys Compd. 2015; 631: 7-14. https://doi.org/10.1016/j.jallcom.2015.01.074.
- 57Zayani W, Azizi S, El-Nasser KS, et al. New nanoparticles of (Sm,Zn)-codoped spinel ferrite as negative electrode in Ni/MH batteries with long-term and enhanced electrochemical performance. Int J Hydrogen Energy. 2018; 44: 11303-11310. https://doi.org/10.1016/j.ijhydene.2018.10.220.
- 58Zang J, Zhang Q, Sun D. Crystal structures and electrochemical properties of R1.5Ca1.5MgNi14 (R=Nd, Gd and Er) hydrogen storage alloys. Chem Res Chin Univ. 2019; 35: 1040-1045. https://doi.org/10.1007/s40242-019-9173-7.
- 59Notten PHL, Hokkeling P. Double-phase hydride forming compounds: a new class of highly electrocatalytic materials. J Electrochem Soc. 1991; 138(7): 1877-1885.
- 60Férey A, Cuevas F, Latroche M, Knosp B, Bernard P. Elaboration and characterization of magnesium-substituted La5Ni19 hydride forming alloys as active materials for negative electrode in Ni-MH battery. Electrochim Acta. 2009; 54(6): 1710-1714. https://doi.org/10.1016/j.electacta.2008.09.069.
- 61Bala H, Dymek M. Corrosion degradation of powder composite hydride electrodes in conditions of long-lasting cycling. Mater Chem Phys. 2015; 167: 265-270. https://doi.org/10.1016/j.matchemphys.2015.10.042.
- 62Bala H, Kukuła I, Giza K, Marciniak B, Różycka-Sokołowska E, Drulis H. Evaluation of electrochemical hydrogenation and corrosion behavior of LaNi5-based materials using galvanostatic charge/discharge measurements. Int J Hydrogen Energ. 2012; 37(22): 16817-16822. https://doi.org/10.1016/j.ijhydene.2012.07.126.
- 63Iwakura C, Fukumoto Y, Matsuoka M, Kohno T, Shinmou K. Electrochemical characterization of hydrogen storage alloys modified with metal oxides. J Alloys Compd. 1993; 192(1–2): 152-154. https://doi.org/10.1016/0925-8388(93)90215-9.
- 64Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energ. 2007; 32(9): 1121-1140. https://doi.org/10.1016/j.ijhydene.2006.11.022.
- 65Wronski ZS. Materials for rechargeable batteries and clean hydrogen energy sources. Int Mater Rev. 2001; 46(1): 1-49. https://doi.org/10.1179/095066001101528394.
- 66Giza K, Iwasieczko W, Pavlyuk VV, Bala H, Drulis H, Adamczyk L. Hydrogen absorption and corrosion resistance of LaNi4.8Al0.2 and LaNi4.8Al0.1Li0.1 alloys. J Alloys Compd. 2007; 429(1–2): 352-356. https://doi.org/10.1016/j.jallcom.2006.07.041.
- 67Feng F, Geng M, Northwood DO. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energ. 2001; 26(7): 725-734. https://doi.org/10.1016/S0360-3199(00)00127-0.
- 68Willems JJG. Metal hydride electrodes: stability of LaNi5-related compounds. Z Phys Chem. 1986; 147(1–2): 231-231. https://doi.org/10.1524/zpch.1986.147.1-2.231.
10.1524/zpch.1986.147.1_2.231 Google Scholar