Review of latent thermal energy storage systems for solar air-conditioning systems
Yu Dong
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
Search for more papers by this authorCorresponding Author
Yanfeng Liu
Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China
Correspondence
Yanfeng Liu Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Dengjia Wang, School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Dengjia Wang
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
Correspondence
Yanfeng Liu Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Dengjia Wang, School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Search for more papers by this authorYingying Wang
Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China
Search for more papers by this authorHu Du
Welsh School of Architecture, Cardiff University, Cardiff, UK
Search for more papers by this authorJiaping Liu
Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China
Search for more papers by this authorYu Dong
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
Search for more papers by this authorCorresponding Author
Yanfeng Liu
Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China
Correspondence
Yanfeng Liu Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Dengjia Wang, School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Dengjia Wang
School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
Correspondence
Yanfeng Liu Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Dengjia Wang, School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
Email: [email protected]
Search for more papers by this authorYingying Wang
Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China
Search for more papers by this authorHu Du
Welsh School of Architecture, Cardiff University, Cardiff, UK
Search for more papers by this authorJiaping Liu
Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, China
Search for more papers by this authorSummary
Solar air conditioning is an important approach to satisfy the high demand for cooling given the global energy situation. The application of phase-change materials (PCMs) in a thermal storage system is a way to address temporary power problems of solar air-conditioning systems. This paper reviews the selection, strengthening, and application of PCMs and containers in latent thermal storage system for solar air-conditioning systems. The optimization of PCM container geometry is summarized and analyzed. The hybrid enhancement methods for PCMs and containers and the cost assessment of latent thermal storage system are discussed. The more effective heat transfer enhancement using PCMs was found to mainly involve micro-nano additives. Combinations of fins and nanoadditives, nanoparticles, and metal foam are the main hybrid strengthening method. However, the thermal storage effect of hybrid strengthening is not necessarily better than single strengthening. At the same time, the latent thermal storage unit has less application in the field of solar air-conditioning systems, especially regarding heat recovery, because of its cost and thermal storage time. The integration of latent thermal storage units and solar air-conditioning components, economic analysis of improvement technology, and quantitative studies on hybrid improvement are potential research directions in the future.
REFERENCES
- 1Galen BUS. Renewables Portfolio Standards: 2017 Annual Status Report. Lawrence Berkeley National Laboratory: Berkeley, CA; 2017.
- 2 Indonesia National Energy Council. New paradigm of Indonesia Energy Policy and PlanningJakarta; 2017.
- 3 National Development and Reform Commission. Renewable energy medium and long term development planning. Renew Energy. 2007; 25(6): 1-5. (In Chinese)
- 4Beerepoot A, Marmion M. Policies for renewable heat, an integrated approach. Paris: IEA (International Energy Agency); 2012.
- 5Helm D. The European framework for energy and climate policies. J Energy Policy. 2014; 64: 29-35.
- 6Connor P. Policies to support the growth of renewable energy sources of heat. J Energy Policy. 2013; 59: 1-2.
- 7Mcneil MA, Letschert VE. Future air conditioning energy consumption in developing countriesand what can be done about it: the potential of efficiency in the residential sectorLawrence Berkeley National Laboratory; 2007.
- 8 National Bureau of Statistics. China Statistical Yearbook; 2017 http://www.stats.gov.cn/tjsj/ndsj/ ; 2017 [accessed 20 December 2018] (In Chinese).
- 9Longo S, Beccali M, Cellura M, Guarino F. Energy and environmental life-cycle impacts of solar-assisted systems: the application of the tool “ELISA”. Renew Energy. 2020; 145: 29-40.
- 10Liu YF, Zhou Y, Chen YW, Wang YY, Zhu Y. Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: a case study in China. Renew Energy. 2020; 146: 1101-1112.
- 11Alla SA, Bianco V, Tagliafico LA, Scarpa F, Zhu Y. An innovative approach to local solar energy planning in Riva Trigoso. Italy J Build Eng. 2020; 27: 100968.
- 12Bloss WH. Advances in solar energy technology. Holland: D. Reidel Pub. Co.; 1988.
- 13Li TX. Study on an innovative multi-effect and double-way thermochemical sorption refrigeration system. Shanghai Jiaotong University. 2009.
- 14Leflar JA, Duff WS. Solar evacuated tube collector: absorption chiller systems simulation. Nasa Sti/Recon Technical Report N. 1977; 79.
- 15Luo YJ, He ZN, Wang CG. Solar energy utilization technology. Beijing: Chemical Industry Press; 2005.
- 16 REN21 Community. Renewables global status report 2018. http://www.ren21.net/gsr-2018/; 2018 [accessed 25 December 2018].
- 17Wang RZ, Zhai XQ. Energy systems in green buildings. Shanghai: Shanghai Jiaotong University Press; 2013.
- 18Li D, Wu Y, Liu C, Zhang G, Arıcı M. Numerical investigation of thermal and optical performance of window units filled with nanoparticle enhanced PCM. Int J Heat Mass Transfer. 2018; 125: 1321-1332.
- 19Li D, Wu Y, Liu C, Zhang G, Arıcı M. Energy investigation of glazed windows containing Nano-PCM in different seasons. Energ Conver Manage. 2018; 172: 119-128.
- 20Liu C, Bian J, Zhang G, Li D, Liu X. Influence of optical parameters on thermal and optical performance of multi-layer glazed roof filled with PCM. Appl Therm Eng. 2018; 134: 615-625.
- 21Zayed ME, Zhao J, Elsheikh AH, et al. Performance augmentation of flat plate solar water collector using phase change materials and nanocomposite phase change materials: a review. Process Safety Environ Prot. 2019; 128: 135-157.
- 22Zayed ME, Zhao J, Elsheikh AH, et al. Applications of cascaded phase change materials in solar water collector storage tanks: a review. Sol Energy Mater Sol Cells. 2019; 199: 24-49.
- 23Abu-Hamdeh NH, Alnefaie KA. Assessment of thermal performance of PCM in latent heat storage system for different applications. Solar Energy. 2019; 177: 317-323.
- 24Has L, González JE, Dukhan N. Solar air conditioning systems with PCM solar collectors. J Sol Energy Eng. 2002; 128.
- 25Allouche Y, Varga S, Bouden C, Oliveira AC. Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl Energy. 2017; 190: 600-611.
- 26Zhai XQ, Wang XL, Wang C, Wang RZ. Experimental investigation of a novel phase change cold storage used for a solar air-conditioning system. Hvac R Res. 2014; 20(3): 302-310.
10.1080/10789669.2014.888899 Google Scholar
- 27Al-Abidi AA, Mat SB, Sopian K, Sulaiman MY, Lim CH, Th A. Review of thermal energy storage for air conditioning systems. Renew Sustain Energy Rev. 2012; 16(8): 5802-5819.
- 28Li G, Hwang Y, Radermacher R. Review of cold storage materials for air conditioning application. Int J Refrig. 2012; 35(8): 2053-2077.
- 29Zhai XQ, Wang XL, Wang T, Wang RZ. A review on phase change cold storage in air-conditioning system: materials and applications. Renew Sustain Energy Rev. 2013; 22(8): 108-120.
- 30Pintaldi S, Perfumo C, Sethuvenkatraman S, White S, Rosengarten G. A review of thermal energy storage technologies and control approaches for solar cooling. Renew Sustain Energy Rev. 2015; 41(1): 975-995.
- 31Khan MMA, Saidur R, Al-Sulaiman FA. A review for phase-change materials (PCMs) in solar absorption refrigeration systems. Renew Sustain Energy Rev. 2017; 76: 105-137.
- 32Omara AA, Abuelnour AA. Improving the performance of air conditioning systems by using phase change materials: a review. Int J Energy Res. 2019; 43(10): 5175-5198.
- 33Agyenim F, Hewitt N. Experimental investigation and improvement in heat transfer of paraffin PCM RT58 storage system to take advantage of low peak tariff rates for heat pump applications. Int J Low-Carbon Technol. 2013; 8(4): 260-270.
- 34Ma XG, Wang YH. Research and application of latent heat storage technology. Energy Res Util. 1991; 6: 13-17. (In Chinese)
- 35Lane G. Latent heat materials. Florida: CRC Press; 1983.
- 36Brancato V, Frazzica A, Sapienza A, Freni A. Identification and characterization of promising phase change materials for solar cooling applications. Sol Energy Mater Sol Cells. 2017; 160: 225-232.
- 37Gil A, Oró E, Peiró G, Álvarez S, Cabeza LF. Material selection and testing for thermal energy storage in solar cooling. Renew Energy. 2013; 57(3): 366-371.
- 38Pollerberg C, Kauffeld M, Oezcan T, Koffler M, Hanu LG, Doetsch C. Latent heat and cold storage in a solar-driven steam jet ejector chiller plant. Energy Procedia. 2012; 30(1): 957-966.
- 39Helm M, Keil C, Hiebler S, Mehling H, Schweigler C. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: energetic performance and operational experience. Int J Refrig. 2009; 32(4): 596-606.
- 40Moreno P, Solé C, Castell A, Cabeza LF. The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: a review. Renew Sustain Energy Rev. 2014; 39(6): 1-13.
- 41Cabeza LF, Castell A, Barreneche C, Gracia AD, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev. 2011; 15(3): 1675-1695.
- 42Huang F, Yu GH. Application of small solar energy absorption refrigeration unit on villa. The 2001 Annual Conference of Institute of refrigeration in Shanghai. 2001. (In Chinese)
- 43Cheng XW, Zhai XQ. Thermal performance analysis of a cascaded cold storage unit using multiple PCMs. Energy. 2018; 143: 448-457.
- 44Allouche Y, Varga S, Bouden C, Oliveira AC. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank. Energy Convers Manage. 2015; 94: 275-285.
- 45Chen X, Worall M, Omer S, Su Y, Riffat S. Experimental investigation on PCM cold storage integrated with ejector cooling system. Appl Therm Eng. 2014; 63(1): 419-427.
- 46Helm M, Hagel K, Pfeffer W, Hiebler S, Schweigler C. Solar heating and cooling system with absorption chiller and latent heat storage—a research project summary. Energy Procedia. 2014; 48: 837-849.
10.1016/j.egypro.2014.02.097 Google Scholar
- 47Schweigler C, Hiebler S, Keil C, Köbel H. Low-temperature heat storage for solar heating and cooling applications. ASHRAE Trans. 2007; 113: 89.
- 48Zhang S, Wu W, Wang S. Integration highly concentrated photovoltaic module exhaust heat recovery system with adsorption air-conditioning module via phase change materials. Energy. 2016; 118.
- 49Ren H, Ma Z, Lin W, Fan W, Li W. Integrating photovoltaic thermal collectors and thermal energy storage systems using phase change materials with rotary desiccant cooling systems. Sustain Cities Soc. 2018; 36: 131-143.
- 50Hassan MM, Beliveau Y. Modeling of an integrated solar system. Build Environ. 2008; 43(5): 804-810.
- 51Poshtiri AH, Jafari A. 24-hour cooling of a building by a PCM-integrated adsorption system. Int J Refrig. 2017; 79.
- 52Charvát P, Klimeš L, Ostrý M. Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems. Energy Build. 2014; 68: 488-497.
- 53Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system. Energy Build. 2013; 60(6): 270-279.
- 54Fadar AE. Novel process for performance enhancement of a solar continuous adsorption cooling system. Energy. 2016; 114: 10-23.
- 55Agyenim F. The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew Energy. 2016; 87: 229-239.
- 56Francis A, Eames P, Smyth M. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renew Energy. 2011; 36: 108-117.
- 57Gil A, Oró E, Miró L, et al. Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. Int J Refrig. 2014; 39(1): 95-103.
- 58Ashby M, Johnson K. Materials and design: the art and science of material selection in product design. Elsevier Ltd: Kidlington; 2002.
- 59Yang HT, Yang RC, Yuan XB, Peng CY. Application of material database in material selection. Dev Appl Mater. 2004; 19(2): 40-44.
- 60Li X, Su H, Chen XL, Yang CF, Xie G. Present status and future of materials database. China Metall. 2007; 17(6): 4-8.
- 61Nazir H, Batool M, Osorio FJB, et al. Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transfer. 2019; 129: 491-523.
- 62Wei GS, Wang G, Xu C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2018; 81(2): 1771-1786.
- 63Ashby M. Materials and the environment: eco-informed material choice. Elsevier Ltd: Kidlington; 2009.
- 64Socaciu L, Giurgiu O, Banyai D, Simion M. PCM selection using AHP method to maintain thermal comfort of the vehicle occupants. Energy Procedia. 2016; 85: 489-497.
10.1016/j.egypro.2015.12.232 Google Scholar
- 65Rathod MK, Kanzaria HV. A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment. Mater Design. 2011; 32(6): 3578-3585.
- 66Loganathan A, Mani I. A fuzzy based hybrid multi criteria decision making methodology for phase change material selection in electronics cooling system. Ain Shams Eng J. 2018; 9(4): 2943-2950.
- 67Rastogi M, Chauhan A, Vaish R, Kishan A. Selection and performance assessment of phase change materials for heating, ventilation and air-conditioning applications. Energy Convers Manage. 2015; 89(1): 260-269.
- 68Xu H, Jia YS, Romagnoli A, Py X. Selection of phase change material for thermal energy storage in solar air conditioning systems. Energy Procedia. 2017; 105: 4281-4288.
- 69Yang K, Zhu N, Chang C, Wang DQ, Yang S, Ma SM. A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): a case study. Energy. 2018; 165(2): 1085-1096.
- 70Mettawee EBS, Assassa GMR. Thermal conductivity enhancement in a latent heat storage system. Solar Energy. 2007; 81(7): 839-845.
- 71Lopez J, Acem Z, Barrio EPD. KNO3/NaNO3–graphite materials for thermal energy storage at high temperature: part II. Phase transition properties. Appl Therm Eng. 2010; 30(13): 1586-1593.
- 72Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl Therm Eng. 2013; 61(2): 825-828.
- 73Shen S, Tan S, Wu S, et al. The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials. Energ Conver Manage. 2018; 157: 41-48.
- 74Yang L, Zhang N, Yuan Y, Cao X, Xiang B. Thermal performance of stearic acid/carbon nanotube composite phase change materials for energy storage prepared by ball milling. Int J Energy Res. 2018.
- 75Leong KY, Ong HC, Amer NH, Norazrina MJ, Risby MS, Ahmad KZK. An overview on current application of nanofluids in solar thermal collector and its challenges. Renew Sustain Energy Rev. 2016; 53: 1092-1105.
- 76Zhou H, Fang CP, Sheng HS, Mu CJ. Synergistic action of nanometer ZnO prepared by sol-gel method on halogen free flame-retarded polypropylene. Rare Metal Mater Eng. 2008; 37: 617-619. (In Chinese)
- 77Zhang P, Song L, Lu HD, Wang J, Hu Y. The thermal property and flame retardant mechanism of intumescent flame retardant paraffin system with metal. Ind Eng Chem Res. 2010; 49(13): 6003-6009.
- 78Yang Z, Yang Z, Li J, et al. Design of diatomite-based hydrated salt composites with low supercooling degree and enhanced heat transfer for thermal energy storage. Int J Energy Res. 2019.
- 79Cabeza LF, Svensson G, Hiebler S, Mehling H. Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material. Appl Therm Eng. 2003; 23(13): 1697-1704.
- 80Telkes M. Thermal energy storage in salt hydrates. Sol Energy Mater. 1980; 2(4): 381-393.
- 81Mohamed SA, Al-Sulaiman FA, Ibrahim NI, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev. 2017; 70: 1072-1089.
- 82Porisini FC. Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Solar Energy. 1988; 41(2): 193-197.
- 83Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007; 11(9): 1913-1965.
- 84Sakurai K, Yoshinaga N, Yagi R, Tomimatsu N, Sano K. Effect of embedding sodium acetate trihydrate on the ag anode in an electrical nucleation cell of a supercooled latent heat storage material. Solar Energy. 2018; 173: 1306-1314.
- 85Wang Y, Yu K, Peng H, Ling X. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage. Energy. 2019; 167: 269-274.
- 86Liu C, Hu P, Xu Z, Ma X, Rao Z. Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage. Thermochim Acta. 2019; 674: 28-35.
- 87Zhao L, Xing Y, Liu X, Luo Y. Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage. Appl Therm Eng. 2018; 143: 172-181.
- 88Oya T, Nomura T, Okinaka N, Akiyama T. Phase change composite based on porous nickel and erythritol. Appl Therm Eng. 2012; 40(40): 373-377.
- 89Zhang Q, Luo Z, Guo Q, Wu G. Preparation and thermal properties of short carbon fibers/erythritol phase change materials. Energ Conver Manage. 2017; 136: 220-228.
- 90Gao L, Zhao J, An Q, Zhao D, Meng F, Liu X. Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container. Appl Therm Eng. 2017; 113: 858-866.
- 91Wang J, Xie H, Guo Z, Guan L, Li Y. Improved thermal properties of paraffin wax by the addition of TiO2, nanoparticles. Appl Therm Eng. 2014; 73(2): 1541-1547.
- 92Mahdi JM, Nsofor EC. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Appl Energy. 2017; 191: 22-34.
- 93Zhang Y, Sun J, Ma G, et al. Hydrophilic expanded graphite–magnesium nitrate hexahydrate composite phase change materials: understanding the effect of hydrophilic modification on thermophysical properties. Int J Energy Res. 2019; 43(3): 1121-1132.
- 94Han X, Zhang X, Hua W, Yuan W, Jia X, Wang ZF. Preparation and application of composite EG/Ba (OH) 2· 8 H2O form-stable phase change material for solar thermal storage. Int J Energy Res. 2019; 43(6): 2227-2240.
- 95Xie WP, Wang N, Zhu DS, Wang XJ. Review of heat transfer enhancement of the PCMs. Chemical Industry and Engineering Progress. 2008; 27(2).
- 96Lopez J, Acem Z, Del Barrio EP. KNO3/NaNO3–graphite materials for thermal energy storage at high temperature: part II.–phase transition properties. Appl Therm Eng. 2010; 30(13): 1586-1593.
- 97Sarbu I, Dorca A. Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials. Int J Energy Res. 2019; 43(1): 29-64.
- 98Gui XH, Yuan XG, Xu WQ. Numerical simulation of advanced solar dynamic system heat pipe receiver. J Syst Simul. 2005; 17(9): 2247-2250.
- 99Hou XB, Yuan XG, Cui HT. The energy analysis in heat receiver cavity. J Aerosp Power. 2002; 17(3): 332-335.
- 100Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev. 2008; 12(9): 2438-2458.
- 101Milián YE, Gutiérrez A, Grágeda M, Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew Sustain Energy Rev. 2017; 73: 983-999.
- 102Zhang P, Qiu ZZ, He M. Review on microencapsulated phase change materials (MPCM) slurries: materials, rheological behavior and applications. Adv Mat Res. 2014; 953-954: 1109-1112.
- 103Huang X, Zhu CQ, Lin YX, Fang GY. Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review. Appl Therm Eng. 2019; 147: 841-855.
- 104Al-Maghalseh M, Mahkamov K. Methods of heat transfer intensification in PCM thermal storage systems: review paper. Renew Sustain Energy Rev. 2018; 92: 62-94.
- 105Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev. 2008; 12(9): 2438-2458.
- 106Cabeza LF, Illa J, Roca J, et al. Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36°C temperature range. Mater Corros. 2001; 52(2): 140-146.
- 107Farrell AJ, Norton B, Kennedy DM. Corrosive effects of salt hydrate phase change materials used with aluminium and copper. J Mater Process Technol. 2006; 175(1-3): 198-205.
- 108Moreno P, Miró L, Solé A, et al. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications. Appl Energy. 2014; 125: 238-245.
- 109Groll M, Brost O, Heine D. Corrosion of steels in contact with salt eutectics as latent heat storage materials: influence of water and other impurities. Heat Recov Syst Chp. 1990; 10(5): 567-572.
- 110Cabeza LF, Roca J, Nogués M, Mehling H, Hiebler S. Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 48 to 58°C temperature range. Mater Corros. 2002; 53(12): 902-907.
- 111Browne MC, Boyd E, Mccormack SJ. Investigation of the corrosive properties of phase change materials in contact with metals and plastic. Renew Energy. 2017; 108: 555-568.
- 112Lázaro A, Zalba B, Bobi M, Castellón C, Cabeza LF. Experimental study on phase change materials and plastics compatibility. Environ Energy Eng. 2005; 52(2): 804-808.
- 113Lane GA. Solar heat storage: latent heat Materials. Florida: CRC Press; 1986.
- 114Panchabikesan K, Raj AA, Ding Y, Ramalingam V. Enhancement in free cooling potential through PCM based storage system integrated with direct evaporative cooling (DEC) unit. Energy. 2017; 144: 443-455.
- 115Su W, Darkwa J, Kokogiannakis G. Development of microencapsulated phase change material for solar thermal energy storage. Appl Therm Eng. 2016; 112: 1205-1212.
- 116Konuklu Y, Paksoy HO, Unal M, Konuklu S. Microencapsulation of a fatty acid with poly (melamine–urea–formaldehyde). Energ Conver Manage. 2014; 80: 382-390.
- 117Jin Z, Wang Y, Liu J, Yang Z. Synthesis and properties of paraffin capsules as phase change materials. Polymer. 2008; 49(12): 2903-2910.
- 118Rodríguez F, López BL. Phenolic resin/PEO-PPO block copolymer composite materials as phase change materials (PCM) for latent heat thermal energy storage (LHTES). J Energy Storage. 2016; 6: 173-177.
- 119Sarı A, Alkan C, Kahraman DD, Çınar K. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Sol Energy. 2015; 115: 195-203.
- 120Hawlader MNA, Uddin MS, Khin MM. Microencapsulated PCM thermal-energy storage system. Appl Energy. 2003; 74(1-2): 195-202.
- 121He F, Wang X, Wu D. Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renew Energy. 2015; 74: 689-698.
- 122Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy. 2014; 114(2): 632-643.
- 123Jacob R, Bruno F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sustain Energy Rev. 2015; 48: 79-87.
- 124Fang G, Chen Z, Li H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem Eng J. 2010; 163(1-2): 154-159.
- 125Peng K, Fu L, Li X, Ouyang J, Yang H. Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Appl Clay Sci. 2017; 138: 100-106.
- 126Zhao L, Wang H, Luo J, Liu Y, Song G, Tang G. Fabrication and properties of microencapsulated n-octadecane with tio2 shell as thermal energy storage materials. Sol Energy. 2016; 127: 28-35.
- 127Li CE, He GX, Yan HG, Yu H, Song Y. Synthesis of microencapsulated stearic acid with amorphous TiO2 as shape-stabilized PCMs for thermal energy storage. Energy Procedia. 2018; 152: 390-394.
- 128Li F, Wang X, Wu D. Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis. Energ Conver Manage. 2015; 106: 873-885.
- 129Li M, Liu J, Shi J. Synthesis and properties of phase change microcapsule with SiO2 -TiO2, hybrid shell. Sol Energy. 2018; 167: 158-164.
- 130Dhaidan NS, Khodadadi JM. Melting and convection of phase change materials in different shape containers: a review. Renew Sustain Energy Rev. 2015; 43: 449-477.
- 131Arunachalam S. Latent heat storage: container geometry, enhancement techniques, and applications—a review. J Sol Energy Eng. 2019; 141(5):050801.
- 132Zhou J, Chen Z, Liu D, Li J. Experimental study on melting in a rectangular enclosure heated below with discrete heat sources. J Therm Sci. 2001; 10(3): 254-259.
- 133Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Therm Fluid Sci. 2013; 50: 201-212.
- 134Jones BJ, Sun D, Krishnan S, Garimella SV. Experimental and numerical study of melting in a cylinder. Int J Heat Mass Transfer. 2006; 49(15): 2724-2738.
- 135Mithat A, Orhan A, Kaygusuz K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng. 2008; 28(5): 405-413.
- 136Darzi AAR, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. App Math Model. 2012; 36(9): 4080-4086.
- 137Zivkovic B, Fujii I. Analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol Energy. 2001; 70(1): 51-61.
- 138Hu ZP, Li AG, Gao R. A comparison study on the thermal performance between rectangular and wedge-shaped thermal storage units. J Xian Univ Archit Technol. 2019; 51(1). (In Chinese)
- 139Hou PM, Mao JF, Liu RR, Chen F. Design and operating characteristics of heat storage device for annular unit. J Refrig. 2018; 39(1): 98-107. (In Chinese)
- 140Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng. 2018; 130: 1349-1362.
- 141Hu ZP, Sun ZG, Li AG. Numerical investigation of melting heat transfer enhancement of enclosure geometry. J Eng Thermophys. 2018; 39(7). (In Chinese)
- 142Hu Z, Li A, Gao R, Yin H. Effect of the length ratio on thermal energy storage in wedge-shaped enclosures. J Therm Anal Calorim. 2014; 117(2): 807-816.
- 143Liu FH, Wang SB, Wang H, Wang HT, Yang PY, Xiong L. Theoretical cylindrical phase change thermal storage unit performance and numerical study. Acta Energiae Sol Sin. 2015; 36(3). (In Chinese)
- 144Wang S, Faghri A, Bergman TL. Melting in cylindrical enclosures: numerical modeling and heat transfer correlations. Numer Heat Transfer, Part A Appl. 2012; 61(11): 837-859.
- 145Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transfer. 2013; 67: 455-468.
- 146Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transfer. 2013; 67: 455-468.
- 147Dutta R, Atta A, Dutta TK. Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material. Can J Chem Eng. 2008; 86(4): 700-710.
- 148Hu CY, Yuan YP, Cao XL, Zhang N, Yu NY. Heat transfer performance of lauric acid in eccentric unit. Acta Energiae Sol Sin. 2016; 36(8): 2008-2015. (In Chinese)
- 149Chen WZ, Cheng SM, Luo Z, Gu WM. Analysis of contact melting of phase change materials inside a heated rectangular capsule. Int J Energy Res. 1995; 19(4): 337-345.
- 150Saitoh TS, Hoshina H, Yamada K. Theoretical analysis and experiment on combined close-contact and natural convection melting in thermal energy storage spherical capsule. Energy Conversion Engineering Conference. IEEE 1997.
- 151Wei J, Kawaguchi Y, Hirano S, Takeuchi H. Study on a PCM heat storage system for rapid heat supply. Appl Therm Eng. 2005; 25(17): 2903-2920.
- 152Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev. 2012; 16(8): 5603-5616.
- 153Yamagishi Y, Sugeno T, Ishige T, Takeuchi H, Pyatenko AT. An evaluation of microencapsulated PCM for use in cold energy transportation medium. Energy Conversion Engineering Coneference. IEEE; 2002.
- 154Regin AF, Solanki SC, Saini JS. Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations. Renew Energy. 2006; 31(13): 2025-2041.
- 155Alvarado JL, Marsh C, Sohn C, Phetteplace G, Newell T. Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int J Heat Mass Transfer. 2007; 50(9-10): 1938-1952.
- 156Chen L, Wang T, Zhao Y, Zhang XR. Characterization of thermal and hydrodynamic properties for microencapsulated phase change slurry (MPCS). Energy Convers Manage. 2014; 79(79): 317-333.
- 157Safari A, Saidur R, Sulaiman FA, Xu Y, Dong J. A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev. 2017; 70: 905-919.
- 158Jurkowska M, Szczygieł I. Review on properties of microencapsulated phase change materials slurries (mPCMS). Appl Therm Eng. 2016; 98(98): 365-373.
- 159Noro M, Lazzarin RM, Busato F. Solar cooling and heating plants: an energy and economic analysis of liquid sensible vs phase change material (PCM) heat storage. Int J Refrig. 2014; 39: 104-116.
- 160Pintaldi S, Sethuvenkatraman S, White S, Rosengarten G. 2017Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Appl Energy. 2017; 188: 160-177.
- 161Wang XL, Zhai XQ, Wang T, Wang HX. Theroetical and experimental study on solar air conditioning system with phase change cold storage. J Refrig. 2013; 34(5): 34-40. (In Chinese)
- 162Najafian A, Haghighat F, Moreau A. 2015Integration of PCM in domestic hot water tanks: optimization for shifting peak demand. Energ Build. 2015; 106: 59-64.
- 163Padovan R, Manzan M. Genetic optimization of a pcm enhanced storage tank for solar domestic hot water systems. Sol Energy. 2014; 103: 563-573.
- 164Mazhar AR, Liu SL, Shukla A. An optimizer using the PSO algorithm to determine thermal parameters of PCM: a case study of grey water heat harnessing. Int J Heat Mass Transfer. 2019; 144: 118574.
- 165Seddegh S, Wang X, Henderson AD. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng. 2016; 93: 348-358.
- 166Mosaffa AH, Talati F, Tabrizi HB, Rosen MA. Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build. 2012; 49(2): 356-361.
- 167Khan Z, Khan Z, Tabeshf K. Parametric investigations to enhance thermal performance of paraffin through a novel geometrical configuration of shell and tube latent thermal storage system. Energy Convers Manage. 2016; 127: 355-365.
- 168Erek A, lken Z, Acar MA. Experimental and numerical investigation of thermal energy storage with a finned tube. Int J Energy Res. 2005; 29(4): 283-301.
- 169Gu YJ, Zhang C, Geng Z, Wang M. Structure optimization and heat transfer research for new type casing phase change heat sequencer. Therm Power Gener. 2018; 1: 33-37. (In Chinese)
- 170Wang P, Yao H, Lan Z, Peng Z, Huang Y, Ding Y. Numerical investigation of PCM melting process in sleeve tube with internal fins. Energy Convers Manage. 2016; 110FEB: 428-435.
- 171Esapour M, Hosseini MJ, Ranjbar AA, Pahamli Y, Bahrampoury R. Phase change in multi-tube heat exchangers. Renew Energy. 2016; 85: 1017-1025.
- 172Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Appl Therm Eng. 2013; 53(1): 147-156.
- 173Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transfer. 2013; 61(1): 684-695.
- 174Wu XH, Wang LX, Li WP, Zhang Lu YL. Investigation of enhanced heat transfer for triple-sleeve thermal energy storage exchangers using phase change materials. J Therm Sci Technol. 2015; 14(2): 101-105. (In Chinese)
- 175Liu C, Groulx D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. Int J Therm Sci. 2014; 82(1): 100-110.
- 176Prieto MM, Suárez I, González B. Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems. Appl Therm Eng. 2017; 116: 11-23.
- 177Diarce G, Campos–Celador Á, Sala JM, García–Romero A. A novel correlation for the direct determination of the discharging time of plate-based latent heat thermal energy storage systems. Appl Therm Eng. 2018; 129: 521-534.
- 178Yang L, Peng H, Ling X, Dong H. Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate-fin unit. Heat Mass Transfer. 2015; 51(2): 195-207.
- 179Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Farid M. Innovative method of metal coating of microcapsules containing phase change materials. Sol Energy. 2016; 129: 54-64.
- 180Wang X, Guo Q, Wang J, et al. Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene. Renew Energy. 2013; 60: 506-509.
- 181Wang W, Wang C, Wang T, et al. Enhancing the thermal conductivity of n-eicosane/silica phase change materials by reduced graphene oxide. Mater Chem Phys. 2014; 147(3): 701-706.
- 182Li JH, Ji W, Li QB. Preparation and thermal properties of phase-change microencapsules incorporated with CNTs in the shell. J Funct Mater. 2014; 45(S2): 110-114.
- 183Yang L, Zhang X, Xu G. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build. 2014; 68: 639-646.
- 184Hu WJ, Chang MN, Gao Y, Zhang QL, Yang LY, Li DY. Experimental study on the cooling charge and discharge characteristics of a PCM based fin-tube thermal energy storage exchanger. Procedia Eng. 2017; 205: 3088-3095.
- 185Mahdia JM, Nsofor EC. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Appl Energy. 2018; 211: 975-986.
- 186Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energ Build. 2014; 68: 33-41.
- 187Yang X, Lu Z, Bai Q, Zhang Q, Jin L, Yan J. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins. Appl Energy. 2017; 202: 558-570.
- 188Campos-Celador A, Diarce G, González-Pino I, Sala JM. Development and comparative analysis of the modeling of an innovative finned-plate latent heat thermal energy storage system. Energy. 2013; 58: 438-447.
- 189Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy. 2009; 83(9): 1509-1520.
- 190Zhai XQ, Cheng XW, Wang C, Wang RZ. Experimental investigation and performance analysis of a fin tube phase change cold storage unit for high temperature cooling application. Energ Build. 2015; 89: 9-17.
- 191Ismail AR, Alves CLF, Modesto MS. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng. 2001; 21(1): 53-77.
- 192Abdulateef AM, Mat S, Abdulateef J, Sopian K, Al-Abidi AA. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review. Renew Sustain Energy Rev. 2018; 82: 1620-1635.
- 193Belusko M, Tay NHS, Liu M, Bruno F. Effective tube-in-tank PCM thermal storage for CSP applications, part 1: impact of tube configuration on discharging effectiveness. Sol Energy. 2015. S0038092X15005289
- 194Mehdi E, Arash H, Ali RDA, Mahmoud J. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system. Energ Conver Manage. 2018; 171: 398-410.
- 195Pourakabar A, Darzi AAR. Enhancement of phase change rate of PCM in cylindrical thermal energy storage. Appl Therm Eng. 2019; 150: 132-142.
- 196Lafri D, Semmar D, Hamid A, Ouzzane M. Experimental investigation on combined sensible and latent heat storage in two different configurations of tank filled with PCM. Appl Therm Eng. 2019; 149: 625-632.
- 197Roberts NS, Al-Shannaq R, Kurdi J, Al-Muhtaseb SA, Farid MM. Efficacy of using slurry of metal-coated microencapsulated PCM for cooling in a micro-channel heat exchanger. Appl Therm Eng. 2017; 122: 11-18.
- 198Liu C, Rao Z, Li Y. Composites enhance heat transfer in paraffin/melamine resin microencapsulated phase change materials. Energ Technol. 2016; 4(4): 496-501.
- 199Li M, Wu Z, Tan J. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method. Appl Energy. 2012; 92: 456-461.
- 200Lin Y, Zhu C, Fang G. Synthesis and properties of microencapsulated stearic acid/silica composites with graphene oxide for improving thermal conductivity as novel solar thermal storage materials. Sol Energy Mater Sol Cells. 2019; 189: 197-205.
- 201Yuan KJ, Wang HC, Liu J, Fang XM, Zhang ZG. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance. Sol Energy Mater Sol Cells. 2016; 143: 29-37.
- 202Poshtiri AH, Jafari A. 24-hour cooling of a building by a PCM-integrated adsorption system. Int J Refrig. 2017; 79.
- 203Kabeel AE. Solar energy assisted desiccant air conditioning system with PCM as a thermal storage medium. Renew Energy. 2018; 122: 632-642.
- 204Ren H, Ma Z, Lin W, Fan W, Li W. Integrating photovoltaic thermal collectors and thermal energy storage systems using phase change materials with rotary desiccant cooling systems. Sustain Cities Society. 2018; 36: 131-143.
- 205Arzamendia Lopez JP, Kuznik F, Baillis D, Virgone J. Numerical modeling and experimental validation of a PCM to air heat exchanger. Energ Build. 2013; 64: 415-422.
- 206Mohammadreza B, Aliakbar MS, Morteza G, Behi H, Palm B. Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment. Energy. 2018; 164: 449-464.
- 207Francis A, Eames P, Smyth M. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renew Energy. 2011; 36: 108-117.
- 208Fadar AE. Novel process for performance enhancement of a solar continuous adsorption cooling system. Energy. 2016; 114: 10-23.
- 209Neyer D, Ostheimer M, Mugnier D, White S. 10 key principles for successful solar air conditioning design—a compendium of IEA SHC task 48 experiences. Sol Energy. 2018; 172: 78-89.
- 210Jiang ML, Wu JY, Xu YX, Wang RZ. Transient characteristics and performance analysis of a vapor compression air conditioning system with condensing heat recovery. Energy Build. 2010; 42(11): 2251-2257.
- 211Miró L, Gasia J, Cabeza LF. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review. Appl Energy. 2016; 179: 284-301.
- 212Cheng WL, Mei BJ, Liu YN, Huang YH, Yuan XD. A novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers: an experimental investigation. Energy. 2011; 36(10): 5797-5804.
- 213Gu Z, Liu H, Li Y. Thermal energy recovery of air conditioning system—heat recovery system calculation and phase change materials development. Appl Therm Eng. 2004; 24(17-18): 2511-2526.
- 214Zhang X, Yu S, Yu M, Lin Y. Experimental research on condensing heat recovery using phase change material. Appl Therm Eng. 2011; 31(17-18): 3736-3740.
- 215Long JY. Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. Sol Energy. 2008; 82(11): 977-985.
- 216Zhang X, Yu S, Yu M, Lin Y. Experimental research on condensing heat recovery using phase change material. Appl Therm Eng. 2011; 31(17-18): 3736-3740.
- 217Belmonte JF, Izquierdo-Barrientos MA, Eguía P, Molina AE, Almendros-Ibáñez JA. PCM in the heat rejection loops of absorption chillers. A feasibility study for the residential sector in Spain. Energy Build. 2014; 80: 331-351.
- 218Helm M, Hagel K, Pfeffer W, Hiebler S, Schweigler C. Solar heating and cooling system with absorption chiller and latent heat storage—a research project summary. Energy Procedia. 2014; 48: 837-849.
10.1016/j.egypro.2014.02.097 Google Scholar
- 219Zhang S, Wu W, Wang S. Integration highly concentrated photovoltaic module exhaust heat recovery system with adsorption air-conditioning module via phase change materials. Energy. 2017; 118: 1187-1197.
- 220Diaconu BM. Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage. Renew Energy. 2012; 37(1): 266-276.
- 221Chen X, Worall M, Omer S, Su Y, Riffat S. Experimental investigation on PCM cold storage integrated with ejector cooling system. Appl Therm Eng. 2014; 63(1): 419-427.
- 222Zheng L, Zhang W, Xie L, Wang W, Tian H, Chen M. Experimental study on the thermal performance of solar air conditioning system with MEPCM cooling storage. Int J Low-Carbon Technol. 2019; 14(1): 83-88.
- 223Huang F, Yu GH. Application of small solar energy absorption refrigeration unit on villa. The 2001 Annual Conference of Institute of refrigeration in Shanghai. 2001. (In Chinese)
- 224Allouche Y, Varga S, Bouden C, Oliveira AC. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank. Energy Convers Manage. 2015; 94: 275-285.
- 225Mahdi JM, Lohrasbi S, Ganji DD, Nsofor EC. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. Int J Heat Mass Transfer. 2018; 124: 663-676.
- 226Godarzi AA, Jalilian M, Samimi J, Jokar A, Vesaghi MA. Design of a PCM storage system for a solar absorption chiller based on exergoeconomic analysis and genetic algorithm. Int J Refrig. 2013; 36(1): 88-101.
- 227Noro M, Lazzarin RM, Busato F. Solar cooling and heating plants: an energy and economic analysis of liquid sensible vs phase change material (PCM) heat storage. Int J Refrig. 2014; 39: 104-116.
- 228Ghorbani B, Mehrpooya M, Sharifzadeh MMM. Introducing a hybrid photovoltaic-thermal collector, ejector refrigeration cycle and phase change material storage energy system (energy, exergy and economic analysis). Int J Refrig. 2019; 103: 61-76.
- 229Kabeel AE, Abdelaziz GB, El-Said EMS. Experimental investigation of a solar still with composite material heat storage: energy, exergy and economic analysis. J Clean Prod. 2019; 231: 21-34.
- 230Bai F, Wang Y, Wang Z, Sun Y, Beath A. Economic evaluation of shell-and-tube latent heat thermal energy storage for concentrating solar power applications. Energy Procedia. 2015; 69: 737-747.
10.1016/j.egypro.2015.03.084 Google Scholar
- 231Thaker S, Oni AO, Kumar A. Techno-economic evaluation of solar-based thermal energy storage systems. Energ Conver Manage. 2017; 153: 423-434.
- 232Nithyanandam K, Pitchumani R. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy. 2014; 64: 793-810.