Solar energy—A look into power generation, challenges, and a solar-powered future
Muhammad Badar Hayat
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Mining Engineering Department, University of Engineering and Technology, Lahore, Pakistan
Search for more papers by this authorDanish Ali
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Search for more papers by this authorKeitumetse Cathrine Monyake
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Search for more papers by this authorCorresponding Author
Lana Alagha
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Correspondence
Lana Alagha, Associate Professor, Missouri University of Science and Technology, 288 McNutt Hall, 1400 North Bishop, Rolla, MO 65409, USA.
Email: [email protected]
Search for more papers by this authorNiaz Ahmed
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Search for more papers by this authorMuhammad Badar Hayat
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Mining Engineering Department, University of Engineering and Technology, Lahore, Pakistan
Search for more papers by this authorDanish Ali
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Search for more papers by this authorKeitumetse Cathrine Monyake
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Search for more papers by this authorCorresponding Author
Lana Alagha
Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Correspondence
Lana Alagha, Associate Professor, Missouri University of Science and Technology, 288 McNutt Hall, 1400 North Bishop, Rolla, MO 65409, USA.
Email: [email protected]
Search for more papers by this authorNiaz Ahmed
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA
Search for more papers by this authorSummary
Sun is an inexhaustible source of energy capable of fulfilling all the energy needs of humankind. The energy from the sun can be converted into electricity or used directly. Electricity can be generated from solar energy either directly using photovoltaic (PV) cells or indirectly using concentrated solar power (CSP) technology. Progress has been made to raise the efficiency of the PV solar cells that can now reach up to approximately 34.1% in multi-junction PV cells. Electricity generation from concentrated solar technologies has a promising future as well, especially the CSP, because of its high capacity, efficiency, and energy storage capability. Solar energy also has direct application in agriculture primarily for water treatment and irrigation. Solar energy is being used to power the vehicles and for domestic purposes such as space heating and cooking. The most exciting possibility for solar energy is satellite power station that will be transmitting electrical energy from the solar panels in space to Earth via microwave beams. Solar energy has a bright future because of the technological advancement in this field and its environment-friendly nature. The biggest challenge however facing the solar energy future is its unavailability all-round the year, coupled with its high capital cost and scarcity of the materials for PV cells. These challenges can be met by developing an efficient energy storage system and developing cheap, efficient, and abundant PV solar cells.
This article discusses the solar energy system as a whole and provides a comprehensive review on the direct and the indirect ways to produce electricity from solar energy and the direct uses of solar energy. The state-of-the-art procedures being employed for PV characterization and performance rating have been summarized. Moreover, the technical, economic, environmental, and storage-related challenges are discussed with possible solutions. Furthermore, a comprehensive list of future potential research directions in the field of direct and indirect electricity generation from solar energy is proposed.
REFERENCES
- 1Crabtree GW, Lewis NS. Solar energy conversion. 2007;(March): 37–42.
- 2Blankenship RE, Tiede DM, Barber J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science (80-). 2011; 332(6031): 805-809. https://10.1016/10.1126/science.1200165
- 3Beddingfield E, Forbes K, Igusky K, Lyon M, Mondshine M, Richards R. Emissions of greenhouse gases in the United States 2009, DOE/EIA-0573(2009).; 2009.
- 4Şen Z. Solar energy in progress and future research trends. Prog Energy Combust Sci. 2004; 30(4): 367-416. https://10.1016/10.1016/j.pecs.2004.02.004
- 5Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renew Sustain Energy Rev. 2011; 15(4): 1777-1790. https://10.1016/10.1016/j.rser.2010.12.018
- 6Perez-Mora N, Bava F, Andersen M, et al. Solar district heating and cooling: a review. Int J Energy Res. 2018; 42(4): 1419-1441.
- 7Sarbu I, Dorca A. A comprehensive review of solar thermoelectric cooling systems. Int J Energy Res. 2018; 42(2): 395-415.
- 8Purohit D, Singh G, Mamodiya U. A review paper on solar energy system. Int J Eng Res Gen Sci. 2017; 5(5): 66-70.
- 9Kapumpa KH, Virdi AS. A review paper on solar photovoltaic systems. Int J Control Theory Appl. 2016; 9(41): 43-52. ISSN: 0974-557
- 10Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Explor Exploit. 2016; 34(4): 485-526.
- 11Ameri T, Khoram P, Min J, Brabec CJ. Organic ternary solar cells: a review. Adv Mater. 2013; 25(31): 4245-4266.
- 12Ahmad MJ, Tiwari GN. Solar radiation models—a review. Int J Energy Res. 2011; 35(4): 271-290.
- 13Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renew Sustain Energy Rev. 2011; 15(3): 1625-1636.
- 14Kerschaver EV, Beaucarne G. Back-contact solar cells: a review. Prog Photovolt Res Appl. 2006; 14(2): 107-123.
- 15Goetzberger A. Solar cells: past, present, future. Sol Energy Mater Sol Cells. 2002; 74(1–4): 1-11. https://10.1016/10.1016/S0927-0248(02)00042-9
- 16Goetzberger A, Hebling C, Schock H-W. Photovoltaic materials, history, status and outlook. Mater Sci Eng R Reports. 2003; 40(1): 1-46. https://10.1016/10.1016/S0927-796X(02)00092-X
- 17Guerrero-Lemus R, Martínez-Duart J. Concentrated solar power. Renew Energies CO2. 2013.
- 18Gee JM, Schubert WK, Basore PA. Emitter wrap-through solar cell. 1993: 265–270.
- 19Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H. Photovoltaic technology: the case for thin-film solar cells. Science. 1999; 285(5428): 692-698. https://10.1126/science.285.5428.692
- 20 Cadmium telluride|department of energy. https://www.energy.gov/eere/sunshot/cadmium-telluride. Accessed August 27, 2017.
- 21Conibeer G. Third-generation photovoltaics. Mater Today. 2007; 10(11): 42-50. https://10.1016/10.1016/S1369-7021(07)70278-X
- 22El Chaar L, Lamont LA, El Zein N. Review of photovoltaic technologies. Renew Sustain Energy Rev. 2011; 15(5): 2165-2175. https://10.1016/10.1016/j.rser.2011.01.004
- 23Spanggaard H, Krebs FC. A brief history of the development of organic and polymeric photovoltaics. Sol Energ Mat Sol C. 2004; 83(2–3): 125-146.
- 24 American Chemical Society. Chemical and engineering news: “news edition” of the American Chemical Society. The American Chemical Society; 1942.
- 25McMeekin DP, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science (80-). 2016; 351(6269): 151-155. https://10.1016/10.1126/science.aad5845
- 26Du J, Du Z, Hu J-S, et al. Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc. 2016; 138(12): 4201-4209. https://10.1016/10.1021/jacs.6b00615
- 27Grätzel M. Dye-sensitized solar cells. J Photochem Photobiol C. 2003; 4(2): 145-153. https://10.1016/10.1016/S1389-5567(03)00026-1
- 28Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 39). Prog Photovoltaics Res Appl. 2012; 20(1): 12-20. https://10.1016/10.1002/pip.2163
- 29 National Renewable Energy Laboratory. NREL photovoltaic research.
- 30Gereffi G, Dubay K, Robinson J. Concentrating solar power; 2008.
- 31Price H, Lüpfert E, Kearney D, et al. Advances in parabolic trough solar power technology. J Sol Energy Eng Trans ASME. 2002; 124(2): 109-125. https://10.1016/10.1115/1.1467922
- 32 Deutsches Zentrum für Luft- und Raumfahrt (DLR). BINE Informationsdienst: Themeninfo: Solarthermische Kraftwerke - Parabolic trough collector technology.
- 33Quaschning V. Technology fundamentals-solar thermal power plants. Renew Energy World. 2003.
- 34Müller-Steinhagen H, Trieb F. Concentrating solar power: a review of the technology. Ingenia. 2004;(18): 43-50. https://10.1016/10.1126/science.1168539
- 35 Stalix. S t a l i x 5¢ /KWh electricity from concentrated solar power (CSP)—Finally a reality.
- 36 LLC Consulting Group L. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. Golden, Colorado; 2003.
- 37Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004; 30(3): 231-295. https://10.1016/10.1016/j.pecs.2004.02.001
- 38 Office of, energy efficiency & renewable energy. Power Tower System Concentrating Solar Power Basics|Department of Energy.
- 39Mehos M, Hafemeister D, Levi B, Levine M, Schwartz P. Concentrating solar power. AIP Conf Proc. 2008; 1044: 331-339. https://10.1016/10.1063/1.2993731
10.1063/1.2993731 Google Scholar
- 40 Renewable Energy Agency I. Renewable energy cost analysis: concentrating solar power; 2012.
- 41Frank B. Suncatchers: a solar tech rundown|KCET.
- 42Heath GA, Burkhardt Iii JJ. Meta-analysis of estimates of life cycle greenhouse gas emissions from concentrating solar power preprint meta-analysis of estimates of life cyvcle greenhouse gas emissions from concentrating solar power. PIX. 2011;16560.
- 43Chaibi M. An overview of solar desalination for domestic and agriculture water needs in remote arid areas. Desalination. 2000; 127(2): 119-133.
- 44Hamidat A, Benyoucef B, Hartani T. Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renew Energy. 2003; 28(7): 1081-1096. https://10.1016/10.1016/S0960-1481(02)00058-7
- 45Rizzo G. Automotive applications of solar energy. IFAC Proc. 2010; 43(7): 174-185. https://10.1016/10.3182/20100712-3-DE-2013.00199
10.3182/20100712-3-DE-2013.00199 Google Scholar
- 46Connors J. On the subject of solar vehicles and the benefits of the technology. In: 2007 International Conference on Clean Electrical Power, ICCEP'07, 2007: 700–705. https://10.1016/10.1109/ICCEP.2007.384287.
- 47Wamborikar YS, Sinha A. Solar powered vehicle. Proc World. 2010; II: 22-25.
- 48Schwarzer K, Vieira da Silva ME. Solar cooking system with or without heat storage for families and institutions. Sol Energy. 2003; 75(1): 35-41. https://10.1016/10.1016/S0038-092X(03)00197-X
- 49Bahnemann D. Photocatalytic water treatment: solar energy applications. Sol Energy. 2004; 77(5): 445-459. https://10.1016/10.1016/j.solener.2004.03.031
- 50Chong MN, Jin B, Chow CWK, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010; 44(10): 2997-3027. https://10.1016/10.1016/j.watres.2010.02.039
- 51Kai Kao C. Solar energy for fuel production. 2011.
- 52Gust D, Moore TA, Moore AL. Solar fuels via artificial photosynthesis. Acc Chem Res. 2009; 42(12): 1890-1898. https://10.1016/10.1021/ar900209b
- 53Glaser P. Solar power from satellites. Phys Today. 1977; 30(2): 30-38.
- 54McSpadden JO, Mankins JC. Space solar power programs and microwave wireless power transmission technology. IEEE Microw Mag. 2002; 3(4): 46-57. https://10.1016/10.1109/MMW.2002.1145675
- 55Brandhorst HWJ. Terrestrial photovoltaic measurement procedures. In: Proc ERDA/NASA Photovolt Meas Work, 1977: 1–17.
- 56Cells UR. Standard test method for electrical performance of concentrator terrestrial photovoltaic modules and systems under natural sunlight 1.2015;i:4–6. https://10.1016/10.1520/E2527-15.2.
- 57Cell PR, Cells UR, Terrestrial C, Reference P, Secondary P, Cells R. Standard test methods for measurement of electrical performance and spectral response of nonconcentrator multijunction photovoltaic. 2015;10(Reapproved):1–5. https://10.1016/10.1520/E2236-10R15.2.
- 58Cell PR, Photovoltaic C, Reference P, et al. Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells. Annu B ASTM Stand. 2011;(C):1–8. https://10.1016/10.1520/E1036-08.2.
- 59Air Z, Solar M, Tables SI, et al. Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight 1.2012:1–5. https://10.1016/10.1520/E0948-16.Copyright.
- 60 Global SAI, Mcsweeney A. International standard 2012;2012: 1–6.
- 61 ASTM. Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37 tilted surface. Astm. 2013;03(Reapproved):1–21. https://10.1016/10.1520/G0173-03R12.2.
- 62 ISO 15686-5. International standard. 2008;2005:22674. https://10.1016/10.5594/J09750.
- 63Green MA, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 36). Prog Photovoltaics Res Appl. 2010; 18(5): 346-352. https://10.1016/10.1002/pip.1021
- 64Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy. 2009; 83(5): 614-624. https://10.1016/10.1016/j.solener.2008.10.008
- 65Emery K. Measurements rating PV power and energy—cell, module, and system measurements; 2011.
- 66Marion B, Kroposki B, Emery K, del Cueto J, Myers D, Osterwald C. Validation of a photovoltaic module energy ratings procedure at NREL. 1999;(August). https://10.1016/10.2172/12187.
- 67Fanney AH, Davis MW, Dougherty BP, King DL, Boyson WE, Kratochvil JA. Comparison of photovoltaic module performance measurements. J Sol Energy Eng. 2006; 128(2): 152. https://10.1016/10.1115/1.2192559
- 68 24 Pvsc Artifacts 1994.Pdf.
- 69Emery K. Uncertainty analysis of certified photovoltaic measurements at the National Renewable Energy Laboratory. 2009;(August). https://10.1016/10.2172/964609.
- 70Emery K. The results of the first world photovoltaic scale recalibration. NREL Tech Rep. 2000;(March).
- 71Hamadani BH, Dougherty B. Solar cell characterization. In: Semiconductor Materials for Solar Photovoltaic Cells. Cham: Springer; 2016: 229-245.
10.1007/978-3-319-20331-7_8 Google Scholar
- 72Emery, K.. Measurements and Characterization of Solar Cells and Modules, US National Renewable Energy Laboratory. 2011.
- 73Metzdorf J. Calibration of solar cells. 1: the differential spectral responsivity method. Appl Optics. 1987; 26(9): 1701-1708. https://10.1016/10.1364/AO.26.001701
- 74Meng H, Xiong L, He Y, et al. Calibration of solar cells' photoelectric properties and related uncertainty analysis. 2014;(August 2014):92331T. https://10.1016/10.1117/12.2069648.
- 75Hishikawa Y, Kosuke Kurokawa YT. Translation of the I-V curve of various solar Cells by improved liner interpolation. Eupvsec. 2006;(September):2093–2096.
- 76 Astm. Standard test method for spectral responsivity measurements of photovoltaic. Astm. 2013;i:1–10. https://10.1016/10.1520/E1021-12.2.
- 77Prakash R, Bhat IK. Energy, economics and environmental impacts of renewable energy systems. Renew Sustain Energy Rev. 2009; 13(9): 2716-2721. https://10.1016/10.1016/j.rser.2009.05.007
- 78Timilsina GR, Kurdgelashvili L, Narbel PA. Solar energy: markets, economics and policies. Renew Sustain Energy Rev. 2012; 16(1): 449-465. https://10.1016/10.1016/j.rser.2011.08.009
- 79Margolis R, David Feldman N, Daniel Boff D. Q4 2016/Q1 2017 solar industry update, Sunshot, U.S. Department of Energy (DOE); 2016.
- 80Tsoutsos T, Frantzeskaki N, Gekas V. Environmental impacts from the solar energy technologies. Energy Policy. 2005; 33(3): 289-296. https://10.1016/S0301-4215(03)00241-6
- 81Kalogirou SA. Environmental benefits of domestic solar energy systems. Energ Conver Manage. 2004; 45(18–19): 3075-3092. https://10.1016/10.1016/j.enconman.2003.12.019
- 82Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007; 11(9): 1913-1965. https://10.1016/10.1016/j.rser.2006.05.005
- 83Dincer I, Dost S. A perspective on thermal energy storage systems for solar energy applications. Int J Energy Res. 1996; 20(November 1994): 547-557. https://10.1016/10.1002/(SICI)1099-114X(199606)20:6<547::AID-ER173>3.0.CO;2-S
- 84Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: a critical review. Prog Nat Sci. 2009; 19(3): 291-312. https://10.1016/j.pnsc.2008.07.014
- 85Emery K, Dunlavy D, Field H, Moriarty T. Photovoltaic spectral responsivity measurements. July. 1998;6(July):5. https://www.nrel.gov/docs/legosti/fy98/23878.pdf.