Hydrothermal oxidation of model molecules and industrial wastes
Corresponding Author
François Cansell
Institut de Chimie de la Matiere Condensée de Bordeaux, CNRS, Université Bordeaux 1, Chǎteau Brivazc, 33608, Pessac cedex, France
Institut de Chimie de la Matiere Condensée de Bordeaux, CNRS, Université Bordeaux 1, Chǎteau Brivazc, 33608, Pessac cedex, FranceSearch for more papers by this authorPatrick Beslin
Association Pǒle Environnement Sud Aquitain, Hélioparc, 2 avenue du Président Angot, 64000 Pau, France
Search for more papers by this authorBernard Berdeu
L'Electrolyse, Zone Industrielle, 33360 Latresne, France
Search for more papers by this authorCorresponding Author
François Cansell
Institut de Chimie de la Matiere Condensée de Bordeaux, CNRS, Université Bordeaux 1, Chǎteau Brivazc, 33608, Pessac cedex, France
Institut de Chimie de la Matiere Condensée de Bordeaux, CNRS, Université Bordeaux 1, Chǎteau Brivazc, 33608, Pessac cedex, FranceSearch for more papers by this authorPatrick Beslin
Association Pǒle Environnement Sud Aquitain, Hélioparc, 2 avenue du Président Angot, 64000 Pau, France
Search for more papers by this authorBernard Berdeu
L'Electrolyse, Zone Industrielle, 33360 Latresne, France
Search for more papers by this authorAbstract
The environmental regulation evolution and the increasing wastewater disposal costs led to a new concept for the complete destruction of toxic substances and sludges. Hydrothermal oxidation of wastes was developed as an alternative technique in order to limit the risks of secondary pollution.
After a brief presentation of previous works dealing with hydrothermal oxidation and supercritical water properties, results concerning two model molecules: methanol and glucose are presented. The oxidation kinetics of methanol is modeled and by-products of glucose characterized.
Results concerning industrial wastes such as paper mill sludges, mechanical wastewaters and cutting oils are examined. The influence of various parameters controlling the trans-formation such as pressure, temperature and residence time are investigated.
Literature Cited
- 1 Modell, M., “Processing Methods for the Oxidation of Organics in Supercritical Water,” U.S. Patent, 4,338,199 (1982).
- 2 Helling R. K., and J. W. Tester, “Oxidation of simple Compounds and Mixtures in Supercritical Water: Carbon Monooxide, Ammonia and Ethanol,” Environ. Sci. Technol., 22, pp 1319–1324 (1988).
- 3 Beslin P., F. Cansell, Y. Garrabos, G. Demazeau, B. Berdeu, and D. Sentagnes, “ Hydrothermal Conversion of Wastes,” Supercritical Fluids and Environment, D. Barth, J. M. Blanchard and F. Cansell, Eds., ISASF Publishing Nancy (France), pp 11–16 (1997).
- 4 Beslin P., F. Cansell, B. Berdeu, Y. Garrabos, G. Demazeau, D. Sentagnes, “ Hydrothermal Treatment of Organic Wastes Application to Model Compounds,” Proceeding of First European Congress on Chemical Engineering, Ed AIDIC Milano (Italy), 1, pp 651–654 (1997).
- 5 Joussot-Dubien Ch., C.,Perre, M. Carlès, Y. Garrabos, “ Volume Reduction of Nuclear Fuel Cycle Waste Using Supercritical Water Oxidation,” S. Saito, K. Arai, Eds., ISASF Publishing Nancy (France), A, pp 79–82 (1996).
- 6 Yang H. H., C. A.,Eckert, “Homogeneous Catalysis in the Oxidation of P-chlorophenol in Supercritical Water,” Ind. Eng. Chem. Res., 27, pp 2005–2014 (1988).
- 7
Lee S. E.,
F. Gloyna,
L. Lixiong,
“Efficiency of H2O2 and O2 in Supercritical Water Oxidation of 2.4-dichloro phenol and Acetic Acid,”
J. Supercrit. Fluids,
3,
pp 249–255
(1990).
10.1016/0896-8446(90)90030-P Google Scholar
- 8 Thornton T. D., P. E.,Savage, “Phenol Oxidation in Supercritical Water,” J. Supercrit. Fluids, 3, pp 240–248 (1990).
- 9 Antal, M. J., “ Water: a Traditional Solvent Pregnant With New Applications,” Proc. Int. Conf. Prop. Water Steam 12th, Publisher Begell House, New York 24–32 (1995).
- 10 Holgate H. R., J. W. Tester, J. C. Meyer, “Glucose Hydrolysis and Oxidation in Supercritical Water,” AIChE J., 41, pp 637–648 (1995).
- 11 Zimmermann F. J., “The Zimmermann Process and its Application in the Pulp and Paper Industry,” Tappi J., 43, pp 710–715 (1960).
- 12 Modell, M., “Processing Methods for the Oxidation of Organics in Supercritical Water,” US Patent, 4,453, 190 (1985).
- 13 Tester J. W., H. R. Holgate, F. J. Armellini, P. A. Webley, W. R. Killilea, G. T. Hong, and H. E. Barner, “ Supercritical Water Oxidation Technology - Process Development and Fundamental Research,” Emerging Technologies in Hazardous Waste Management III, ACS Symp. Ser. 518, pp 35–76 (1993).
- 14 Eco Waste Technologies, “ Supercritical Water Oxidation,” Information package, Austin, Texas 78758.
- 15 Modell M., J. Larson, S. F. Sobczynski, “Supercritical Water Oxidation of Pulp Mill Sludges,” Tappi J., pp 195–202 (1992).
- 16 Johnston J. B., R. E. Hannah, V. L. Cunningham, B. P. Daggy, F. J. Sturm, and R. M. Kelly, “Destruction of Pharmaceutical and Biopharmaceutical Wastes by the Modar Supercritical Water Oxidation Process,” Biotechnology, 6, pp 1423–1427 (1988).
- 17 Goldacker H., J. Abeln, M. Kluth, A. Kruse, H. Schmieder, and G. Wiegand, “ Oxidation of Organic Material in Supercritical Water and Carbon Dioxide,” High Pressure Chemical Engineering, Elsevier, Amsterdam, Process Technology Proceeding, 12, pp 61–66 (1996).
- 18 Luck F., C. Bonnin, G. Niel, G. Naud, “ Supercritical and Subcritical Wazter Oxidation of Biosolids- A Comparative Survey of By-products,” Proceeding of First International Workshop on Supercritical Water Oxidation, Jacksonville-USA, session IX, pp 25–31 (1995).
- 19 Shanableh A., E. F. Gloyna, “Supercritical Water Oxidation-Wastewaters and Sludges,” Wat. Sci. Tech., 23, pp 389–398 (1991).
- 20 Timberlake S. H., G. T. Hong, M. Simson, M. Modell, “ Supercritical Water Oxidation for Wastewater Treatment - Preliminary Study of Urea Destruction,” SAE Tech. Pap. Ser., N°820872 (1982).
- 21 Harradine D. M., S. J. Buelow, P. C. Dell'orco, R. B. Dyer, B. R. Foy, J. M. Robinson, J. A. Sanchez, T. Spontarelli, J. D. Wander, “Oxidation Chemistry of Energetic Materials in Supercritical Water,” Hazardous Waste & Hazardous Materials, 10, pp 233–246 (1993).
- 22 Hazlebeck D. A., K. W. Downey, D. D. Jensen, M. H. Spritzer, “ Supercritical Water Oxidation of Chemical Agents, Solid Propellants and other DoD Hazardous Wastes,” Report General Atomics, (march 1993).
- 23 Debenedetti P. G., R. C. Reid, AIChE J., 32, pp 2034–2046 (1986).
- 24 Tromp R. H., P. Postorino, G. W. Neilson, M. A. Ricci, A. K. Soper, J. Chem. Phys., 101, pp 6210–6214 (1994).
- 25 Ohtaki H., T.Radnai, T. Yamaguchi, Chem. Soci. Rev., pp 41–51 (1997).
- 26 Connolly J. F., “Solubility of Hydrocarbons in Water Near the Critical Solution Temperature,” J. Chem. Eng. Data, 11, pp 13–16 (1996).
- 27 Tester J. W., P. A. Webley, H. R. Holgate, “Revised Global Kinetics Measurements of Methanol Oxidation in Supercritical Water,” Ind. Eng. Chem. Res., 32, pp 236–239 (1993).
- 28 Rice S. F., T. B. Hunter, A. C. Ryden, R. G. Harush, “Raman Spectroscopy Measurment of Oxidation in Supercritical Water: Conversion of Methanol to Formaldehyde,” Ind. Eng. Chem. Res., 35, pp 2161–2171 (1996).
- 29 Cansell, F., S. Rey, P. Beslin, “Thermodynamic Aspects of Supercritical Fluids Processing: Applications to Polymers and Wastes Treatment,” Revue de L'Institut Français du Pétrole, 53, pp 71–94 (1998).
- 30 Schmidt, E., “ Properties of Water and Steam in SI-units,” U. Grigull, Ed., Springer-Verglag, New York (1982).