Single-Crystal Perovskite Halide: Crystal Growth to Devices Applications
Corresponding Author
Krishna Prakash
Department of Electronics and Communication Engineering, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Department of Electronics and Communication Engineering, NRI Institute of Technology, Agiripalli, Krishna District, 521212 Andhra Pradesh, India
Search for more papers by this authorNaga Jyoti Valeti
Department of Electronics and Communication Engineering, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Search for more papers by this authorPrince Jain
Department of Mechatronics Engineering, Parul University, Vadodara, 391760 Gujarat, India
Search for more papers by this authorChandra Shakher Pathak
Department of Physics, BMS Institute of Technology and Management, Avalahalli, 560064 Bengaluru, India
Search for more papers by this authorMonoj Kumar Singha
Department of Electronics and Communication Engineering, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Department of Electronics and Communication, University of Allahabad, Allahabad, 211002 Uttar Pradesh, India
Search for more papers by this authorCorresponding Author
Satyajit Gupta
Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, 491002 Chhattisgarh, India
Search for more papers by this authorEran Edri
Department of Chemical Engineering, Ben-Gurion University of the Negev, Negev, 8410501 Israel
Search for more papers by this authorCorresponding Author
Sabyasachi Mukhopadhyay
Department of Physics, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Search for more papers by this authorCorresponding Author
Krishna Prakash
Department of Electronics and Communication Engineering, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Department of Electronics and Communication Engineering, NRI Institute of Technology, Agiripalli, Krishna District, 521212 Andhra Pradesh, India
Search for more papers by this authorNaga Jyoti Valeti
Department of Electronics and Communication Engineering, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Search for more papers by this authorPrince Jain
Department of Mechatronics Engineering, Parul University, Vadodara, 391760 Gujarat, India
Search for more papers by this authorChandra Shakher Pathak
Department of Physics, BMS Institute of Technology and Management, Avalahalli, 560064 Bengaluru, India
Search for more papers by this authorMonoj Kumar Singha
Department of Electronics and Communication Engineering, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Department of Electronics and Communication, University of Allahabad, Allahabad, 211002 Uttar Pradesh, India
Search for more papers by this authorCorresponding Author
Satyajit Gupta
Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, 491002 Chhattisgarh, India
Search for more papers by this authorEran Edri
Department of Chemical Engineering, Ben-Gurion University of the Negev, Negev, 8410501 Israel
Search for more papers by this authorCorresponding Author
Sabyasachi Mukhopadhyay
Department of Physics, SRM University AP, Guntur, 522240 Andhra Pradesh, India
Search for more papers by this authorAbstract
Over a decade, researchers have depicted remarkable optoelectronic properties of halide-based organic–inorganic perovskites and demonstrated impressive power conversion efficiency in photovoltaic applications, starting from 3.9% to 26.1%. The optoelectronic properties of halide-based perovskites are significantly influenced by the crystal form and crystallization process. There are two common forms of halide-based perovskites: polycrystalline films and single-crystal. In polycrystalline thin films, multiple grain boundaries lead to ion migration, surface flaws, and instability, making them unsuitable for device applications. In contrast, single-crystal halide-based perovskites are stable and exhibit exceptional features like long carrier diffusion lengths and low trap density. Although research on polycrystalline halide-based perovskite thin films is currently intense, investigations on single crystals are still in their early stages. This review article discusses single-crystal perovskite halide growth methods and their use in optoelectronic devices, as crystal growth affects solar cells, light-emitting diodes, lasers, photodetectors, and other devices.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 S. Arya, P. Mahajan, R. Gupta, R. Srivastava, N. Kumar Tailor, S. Satapathi, R. R. Sumathi, R. Datt, V. Gupta, Prog. Solid State Chem. 2020, 60, 100286.
- 2 Y. Chen, M. He, J. Peng, Y. Sun, Z. Liang, Adv. Sci. 2016, 3, https://doi.org/10.1002/advs.201670022.
- 3 A. Poglitsch, D. Weber, J. Chem. Phys. 1987, 87, 6373.
- 4 Y. Dang, D. Ju, L. Wang, X. Tao, CrystEngComm 2016, 18, 4476.
- 5 S. Bhaumik, S. Ray, S. K. Batabyal, Mater. Today Chem. 2020, 18, 100363.
- 6 H. Kim, M. J. Choi, J. M. Suh, J. S. Han, S. G. Kim, Q. Van Le, S. Y. Kim, H. W. Jang, NPG Asia Mater. 2020, 12, 21.
- 7 G. Chen, B. Zhu, H. Deng, Y. Luo, W. Sun, H. Liu, W. Zhang, X. Wang, Y. Qian, X. Hu, S. Geng, J. S. Kim, ACS Appl. Mater. Interfaces 2018, 10, 33179.
- 8 I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, A. M. Rappe, Nature 2013, 503, 509.
- 9 T. Ye, X. Wang, X. Li, A. Q. Yan, S. Ramakrishna, J. Xu, J. Mater. Chem. C 2017, 5, 1255.
- 10 C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater. 2016, 28, 5778.
- 11 X. Cheng, L. Jing, Y. Zhao, S. Du, J. Ding, T. Zhou, J. Mater. Chem. C 2018, 6, 1579.
- 12 J. Ding, Z. Lian, Y. Li, S. Wang, Q. Yan, J. Phys. Chem. Lett. 2018, 9, 4221.
- 13 D. Amgar, S. Aharon, L. Etgar, Adv. Funct. Mater. 2016, 26, 8576.
- 14 Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, S. Jin, Nat. Rev. Mater. 2019, 4, 169.
- 15 B. Murali, H. K. Kolli, J. Yin, R. Ketavath, O. M. Bakr, O. F. Mohammed, ACS Mater. Lett. 2020, 2, 184.
- 16 M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, O. M. Bakr, Nat. Commun. 2015, 6, 8724.
- 17 C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584.
- 18 Y. Zou, T. Zou, C. Zhao, B. Wang, J. Xing, Z. Yu, J. Cheng, W. Xin, J. Yang, W. Yu, H. Dong, C. Guo, Small 2020, 16, 2000733.
- 19 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
- 20 Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, S. F. Liu, Adv. Mater. 2016, 28, 9204.
- 21 Y. Song, W. Bi, A. Wang, X. Liu, Y. Kang, Q. Dong, Nat. Commun. 2020, 11, 274.
- 22 W. Yu, F. Li, L. Yu, M. R. Niazi, Y. Zou, D. Corzo, A. Basu, C. Ma, S. Dey, M. L. Tietze, U. Buttner, X. Wang, Z. Wang, M. N. Hedhili, C. Guo, T. Wu, A. Amassian, Nat. Commun. 2018, 9, 5354.
- 23 C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, F. Gao, Adv. Mater. 2018, 30, 1870288.
- 24 N. Cho, F. Li, B. Turedi, L. Sinatra, S. P. Sarmah, M. R. Parida, M. I. Saidaminov, B. Murali, V. M. Burlakov, A. Goriely, O. F. Mohammed, T. Wu, O. M. Bakr, Nat. Commun. 2016, 7, 13407.
- 25 W. Ning, F. Wang, B. Wu, J. Lu, Z. Yan, X. Liu, Y. Tao, J. M. Liu, W. Huang, M. Fahlman, L. Hultman, T. C. Sum, F. Gao, Adv. Mater. 2018, 30, 1706246.
- 26 Y. Kanemitsu, J. Mater. Chem. C 2017, 5, 3427.
- 27 I. Dursun, C. Shen, M. R. Parida, J. Pan, S. P. Sarmah, D. Priante, N. Alyami, J. Liu, M. I. Saidaminov, M. S. Alias, A. L. Abdelhady, T. K. Ng, O. F. Mohammed, B. S. Ooi, O. M. Bakr, ACS Photonics 2016, 3, 1150.
- 28 Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu, Nature 2018, 561, 88.
- 29 Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, Q. Xiong, Adv. Funct. Mater. 2016, 26, 6238.
- 30 Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
- 31 C. Li, H. Sun, S. Gan, D. Dou, L. Li, Mater. Futures 2023, 2, 042101.
- 32 K. Sakhatskyi, B. Turedi, G. J. Matt, E. Wu, A. Sakhatska, V. Bartosh, M. N. Lintangpradipto, R. Naphade, I. Shorubalko, O. F. Mohammed, S. Yakunin, O. M. Bakr, M. V. Kovalenko, Nat. Photonics 2023, 17, 510.
- 33 Y. Haruta, H. Ye, P. Huber, N. Sandor, A. Pavesic Junior, S. Dayneko, S. Qiu, V. Yeddu, M. I. Saidaminov, Nat. Synth. 2024.
- 34 D. B. Mitzi, K. Chondroudis, C. R. Kagan, Inorg. Chem. 1999, 38, 6246.
- 35
D. B. Mitzi, ChemInform 2010, 27, https://doi.org/10.1002/chin.199626029.
10.1002/chin.199626029 Google Scholar
- 36 T. Miyasaka, A. Kojima, T. Teshima, Y. Shirai, J. Am. Chem. Soc. 2009, 131, 6050.
- 37 A. Y. Alsalloum, B. Turedi, X. Zheng, S. Mitra, A. A. Zhumekenov, K. J. Lee, P. Maity, I. Gereige, A. AlSaggaf, I. S. Roqan, O. F. Mohammed, O. M. Bakr, ACS Energy Lett. 2020, 5, 657.
- 38 F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, R. H. Friend, J. Phys. Chem. Lett. 2014, 5, 1421.
- 39 Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, H. Fu, Adv. Mater. 2015, 27, 3405.
- 40 Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S. F. Liu, Adv. Opt. Mater. 2016, 4, 1829.
- 41 Y. Liu, Z. Yang, S. F. Liu, Adv. Sci. 2018, 5, 1700471.
- 42 Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Angew. Chem., Int. Ed. 2016, 55, 3447.
- 43 Z. Lian, Q. Yan, Q. Lv, Y. Wang, L. Liu, L. Zhang, S. Pan, Q. Li, L. Wang, J. L. Sun, Sci. Rep. 2015, 5, 16563.
- 44 Z. Lian, Q. Yan, T. Gao, J. Ding, Q. Lv, C. Ning, Q. Li, J. L. Sun, J. Am. Chem. Soc. 2016, 138, 9409.
- 45 V. Belruss, J. Kalnajs, A. Linz, R. C. Folweiler, Mater. Res. Bull. 1971, 6, 899.
- 46 Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, X. Tao, CrystEngComm 2015, 17, 665.
- 47 T. Ye, W. Fu, J. Wu, Z. Yu, X. Jin, H. Chen, H. Li, J. Mater. Chem. A 2016, 4, 1214.
- 48 M. Daub, H. Hillebrecht, Angew. Chem., Int. Ed. 2015, 54, 11016.
- 49 H. Jiang, C. Kloc, MRS Bull. 2013, 38, 28.
- 50 C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, Cryst. Growth Des. 2013, 13, 2722.
- 51 M. Rodová, J. Brožek, K. Knížek, K. Nitsch, J. Therm. Anal. Calorim. 2003, 71, 667.
- 52 I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis, Nature 2012, 485, 486.
- 53 Y. He, L. Matei, H. J. Jung, K. M. McCall, M. Chen, C. C. Stoumpos, Z. Liu, J. A. Peters, D. Y. Chung, B. W. Wessels, M. R. Wasielewski, V. P. Dravid, A. Burger, M. G. Kanatzidis, Nat. Commun. 2018, 9, 1609.
- 54 P. Zhang, G. Zhang, L. Liu, D. Ju, L. Zhang, K. Cheng, X. Tao, J. Phys. Chem. Lett. 2018, 9, 5040.
- 55 D. B. Mitzi, J. Solid State Chem. 1999, 145, 694.
- 56 D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519.
- 57 C. Zuo, L. Ding, Angew. Chem., Int. Ed. 2017, 56, 6528.
- 58 F. Liu, F. Wang, K. R. Hansen, X. Y. Zhu, J. Phys. Chem. C 2019, 123, 14865.
- 59 G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, O. M. Bakr, J. Phys. Chem. Lett. 2015, 6, 3781.
- 60 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
- 61 J. Frenkel, J. Chem. Phys. 1939, 7, 538.
- 62 L. Chen, Y. Y. Tan, Z. X. Chen, T. Wang, S. Hu, Z. A. Nan, L. Q. Xie, Y. Hui, J. X. Huang, C. Zhan, S. H. Wang, J. Z. Zhou, J. W. Yan, B. W. Mao, Z. Q. Tian, J. Am. Chem. Soc. 2019, 141, 1665.
- 63 S. Kawachi, M. Atsumi, N. Saito, N. Ohashi, Y. Murakami, J. I. Yamaura, J. Phys. Chem. Lett. 2019, 10, 6967.
- 64 J. M. Kadro, K. Nonomura, D. Gachet, M. Grätzel, A. Hagfeldt, Sci. Rep. 2015, 5, 11654.
- 65 T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, T. J. White, J. Mater. Chem. A 2013, 1, 5628.
- 66 C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019.
- 67 S. Yang, Y. C. Zheng, Y. Hou, X. Chen, Y. Chen, Y. Wang, H. Zhao, H. G. Yang, Chem. Mater. 2014, 26, 6705.
- 68 T. Zhang, M. Yang, E. E. Benson, Z. Li, J. van de Lagemaat, J. M. Luther, Y. Yan, K. Zhu, Y. Zhao, Chem. Commun. 2015, 51, 7820.
- 69 Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Nat. Photonics 2015, 9, 679.
- 70 Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, S. Liu, Adv. Mater. 2015, 27, 5176.
- 71 D. Weber, Z. Naturforsch. B 1978, 33, 862.
- 72 A. A. Zhumekenov, V. M. Burlakov, M. I. Saidaminov, A. Alofi, M. A. Haque, B. Turedi, B. Davaasuren, I. Dursun, N. Cho, A. M. El-Zohry, M. De Bastiani, A. Giugni, B. Torre, E. Di Fabrizio, O. F. Mohammed, A. Rothenberger, T. Wu, A. Goriely, O. M. Bakr, ACS Energy Lett. 2017, 2, 1782.
- 73 J. Huang, Y. Shao, Q. Dong, J. Phys. Chem. Lett. 2015, 6, 3218.
- 74
J. V. D., J. Chem. Educ. 1965, 42, A692.
10.1021/ed042pA318.1 Google Scholar
- 75 L. M. Herz, ACS Energy Lett. 2017, 2, 1539.
- 76 H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H. H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, J. Huang, Nat. Photonics 2016, 10, 333.
- 77 M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. MacUlan, A. Goriely, T. Wu, O. F. Mohammed, O. M. Bakr, Nat. Commun. 2015, 6, 7586.
- 78 J. Lim, M. T. Hörantner, N. Sakai, J. M. Ball, S. Mahesh, N. K. Noel, Y. H. Lin, J. B. Patel, D. P. McMeekin, M. B. Johnston, B. Wenger, H. J. Snaith, Energy Environ. Sci. 2019, 12, 169.
- 79 R. Babu, L. Giribabu, S. P. Singh, Cryst. Growth Des. 2018, 18, 2645.
- 80 Y. Yan, M. Yang, S. Choi, K. Zhu, J. M. Luther, Y. Yang, M. C. Beard, Nat. Commun. 2015, 6, 1.
- 81 Y. Bi, E. M. Hutter, Y. Fang, Q. Dong, J. Huang, T. J. Savenije, J. Phys. Chem. Lett. 2016, 7, 923.
- 82 Z. Ni, C. Bao, Y. Liu, Q. Jiang, W. Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Science 2020, 367, 1352.
- 83 O. Almora, C. Aranda, G. Garcia-Belmonte, J. Phys. Chem. C 2018, 122, 13450.
- 84 Y. Cho, H. R. Jung, W. Jo, J. Phys.: Energy 2021, 3, 044005.
- 85 A. Kalam, R. Runjhun, A. Mahapatra, M. M. Tavakoli, S. Trivedi, H. Tavakoli Dastjerdi, P. Kumar, J. Lewiński, M. Pandey, D. Prochowicz, P. Yadav, J. Phys. Chem. C 2020, 124, 3496.
- 86 S. Heo, G. Seo, Y. Lee, D. Lee, M. Seol, J. Lee, J. B. Park, K. Kim, D. J. Yun, Y. S. Kim, J. K. Shin, T. K. Ahn, M. K. Nazeeruddin, Energy Environ. Sci. 2017, 10, 1128.
- 87 L. Li, P. Jia, W. Bi, Y. Tang, B. Song, L. Qin, Z. Lou, Y. Hu, F. Teng, Y. Hou, RSC Adv. 2020, 10, 28083.
- 88 Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, J. Huang, Energy Environ. Sci. 2016, 9, 1752.
- 89 J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, J. Am. Chem. Soc. 2015, 137, 10048.
- 90 J. Ding, L. Jing, X. Cheng, Y. Zhao, S. Du, X. Zhan, H. Cui, J. Phys. Chem. Lett. 2018, 9, 216.
- 91 D. Kim, J. H. Yun, M. Lyu, J. Kim, S. Lim, J. S. Yun, L. Wang, J. Seidel, J. Phys. Chem. C 2019, 123, 14144.
- 92 H. R. Jung, M. Bari, Y. Cho, Y. S. Kim, T. T. T. Nguyen, Y. Kim, S. Yoon, Y. C. Jo, J. H. Kim, S. Yuldashev, Z. G. Ye, W. Jo, Appl. Phys. Lett. 2021, 118, 143301.
- 93 H. R. Jung, B. P. Nguyen, H. J. Jin, T. T. T. Nguyen, S. Yoon, W. S. Woo, C. W. Ahn, S. Cho, I. W. Kim, W. Jo, CrystEngComm 2018, 20, 6551.
- 94 Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Energy Environ. Sci. 2017, 10, 516.
- 95 W. G. Li, H. S. Rao, B. X. Chen, X. D. Wang, D. Bin Kuang, J. Mater. Chem. A 2017, 5, 19431.
- 96 Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193.
- 97 B. Azzopardi, C. J. M. Emmott, A. Urbina, F. C. Krebs, J. Mutale, J. Nelson, Energy Environ. Sci. 2011, 4, 3741.
- 98 Q. Dong, J. Song, Y. Fang, Y. Shao, S. Ducharme, J. Huang, Adv. Mater. 2016, 28, 2816.
- 99 X. Jiang, X. Fu, D. Ju, S. Yang, Z. Chen, X. Tao, ACS Energy Lett. 2020, 5, 1797.
- 100 W. Peng, L. Wang, B. Murali, K. T. Ho, A. Bera, N. Cho, C. F. Kang, V. M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J. H. He, O. F. Mohammed, T. Wu, O. M. Bakr, Adv. Mater. 2016, 28, 3383.
- 101 H. S. Rao, B. X. Chen, X. D. Wang, D. Bin Kuang, C. Y. Su, Chem. Commun. 2017, 53, 5163.
- 102 L. Lee, J. Baek, K. S. Park, Y. E. K. Lee, N. K. Shrestha, M. M. Sung, Nat. Commun. 2017, 8, 15882.
- 103 B. Náfrádi, G. Náfrádi, L. Forró, E. Horváth, J. Phys. Chem. C 2015, 119, 25204.
- 104 S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim, J. A. Rowlands, Sensors 2011, 11, 5112.
- 105 H. Mescher, E. Hamann, U. Lemmer, Sci. Rep. 2019, 9, 5231.
- 106 L. Basiricò, S. P. Senanayak, A. Ciavatti, M. Abdi-Jalebi, B. Fraboni, H. Sirringhaus, Adv. Funct. Mater. 2019, 29, 1902346.
- 107 W. Heiss, C. Brabec, Nat. Photonics 2016, 10, 288.
- 108 S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G. J. Matt, H. Azimi, C. J. Brabec, J. Stangl, M. V. Kovalenko, W. Heiss, Nat. Photonics 2015, 9, 444.
- 109 S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, M. V. Kovalenko, Nat. Photonics 2016, 10, 585.
- 110 F. Palazon, F. Di Stasio, Q. A. Akkerman, R. Krahne, M. Prato, L. Manna, Chem. Mater. 2016, 28, 2902.
- 111 X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, J. You, Nat. Commun. 2018, 9, 570.
- 112 K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245.
- 113 H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. S. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. W. Lee, Science 2015, 350, 1222.
- 114 R. Cai, X. Qu, H. Liu, H. Yang, K. Wang, X. W. Sun, IEEE Trans. Nanotechnol. 2019, 18, 1050.
- 115 X. Lian, X. Wang, Y. Ling, E. Lochner, L. Tan, Y. Zhou, B. Ma, K. Hanson, H. Gao, Adv. Funct. Mater. 2019, 29, 1807345.
- 116 M. Chen, X. Shan, T. Geske, J. Li, Z. Yu, ACS Nano 2017, 11, 6312.
- 117 Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, Q. Xiong, Nano Lett. 2014, 14, 5995.
- 118 K. Wang, W. Sun, J. Li, Z. Gu, S. Xiao, Q. Song, ACS Photonics 2016, 3, 1125.
- 119 X. Li, K. Wang, M. Chen, S. Wang, Y. Fan, T. Liang, Q. Song, G. Xing, Z. Tang, Adv. Opt. Mater. 2020, 8, 2000030.
- 120 H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, W. Zhang, J. Phys. Chem. Lett. 2014, 5, 1511.
- 121 D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, G. Lanzani, Nat. Commun. 2011, 2, 166.
- 122 M. Razeghi, A. Rogalski, J. Appl. Phys. 1996, 79, 7433.
- 123 Y. Wang, X. Zhang, D. Wang, X. Li, J. Meng, J. You, Z. Yin, J. Wu, ACS Appl. Mater. Interfaces 2019, 11, 28005.
- 124 J. Ding, Q. Yan, Sci. China Mater. 2017, 60, 1063.
- 125 M. Cao, J. Tian, Z. Cai, L. Peng, L. Yang, D. Wei, Appl. Phys. Lett. 2016, 109, 233303.
- 126 Y. Liu, X. Ren, J. Zhang, Z. Yang, D. Yang, F. Yu, J. Sun, C. Zhao, Z. Yao, B. Wang, Q. Wei, F. Xiao, H. Fan, H. Deng, L. Deng, S. F. Liu, Sci. China Chem. 2017, 60, 1367.
- 127 Y. Zhang, Y. Liu, Y. Li, Z. Yang, S. Liu, J. Mater. Chem. C 2016, 4, 9172.
- 128 M. I. Saidaminov, M. A. Haque, M. Savoie, A. L. Abdelhady, N. Cho, I. Dursun, U. Buttner, E. Alarousu, T. Wu, O. M. Bakr, Adv. Mater. 2016, 28, 8144.
- 129 Y. Liu, Y. Zhang, X. Zhu, Z. Yang, W. Ke, J. Feng, X. Ren, K. Zhao, M. Liu, M. G. Kanatzidis, S. Liu, Sci. Adv. 2021, 7, https://doi.org/10.1126/sciadv.abc8844.
- 130 Z. Yang, Y. Deng, X. Zhang, S. Wang, H. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, R. Ma, Adv. Mater. 2018, 30, 1704333.
- 131 J. Ding, H. Fang, Z. Lian, J. Li, Q. Lv, L. Wang, J. L. Sun, Q. Yan, CrystEngComm 2016, 18, 4405.
- 132 P. A. Shaikh, D. Shi, J. R. D. Retamal, A. D. Sheikh, M. A. Haque, C. F. Kang, J. H. He, O. M. Bakr, T. Wu, J. Mater. Chem. C 2016, 4, 8304.
- 133 H. Fang, Q. Li, J. Ding, N. Li, H. Tian, L. Zhang, T. Ren, J. Dai, L. Wang, Q. Yan, J. Mater. Chem. C 2016, 4, 630.
- 134 Y. Cho, H. R. Jung, W. Jo, Nanoscale 2022, 14, 9248.
- 135 Y. Hu, G. W. P. Adhyaksa, G. Deluca, A. N. Simonov, N. W. Duffy, E. Reichmanis, U. Bach, P. Docampo, T. Bein, E. C. Garnett, A. S. R. Chesman, A. N. Jumabekov, AIP Adv. 2019, 9, 125037.
- 136 T. J. Jacobsson, M. Pazoki, A. Hagfeldt, T. Edvinsson, J. Phys. Chem. C 2015, 119, 25673.
- 137 J. Yan, H. Li, M. H. Aldamasy, C. Frasca, A. Abate, K. Zhao, Y. Hu, Chem. Mater. 2023, 35, 2683.
- 138 W. Q. Liao, Y. Zhang, C. L. Hu, J. G. Mao, H. Y. Ye, P. F. Li, S. D. Huang, R. G. Xiong, Nat. Commun. 2015, 6, 7338.
- 139 D. N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko, M. V. Kovalenko, Chem. Mater. 2016, 28, 8470.
- 140 D. Yang, C. Xie, J. Sun, H. Zhu, X. Xu, P. You, S. P. Lau, F. Yan, S. F. Yu, Adv. Opt. Mater. 2016, 4, 1053.
- 141 M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X. H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O. F. Mohammed, T. Wu, O. M. Bakr, Adv. Opt. Mater. 2017, 5, 1600704.
- 142 Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. Yang, Y. S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yeng, Adv. Mater. 2016, 28, 2253.