Enhanced Supercapacitive Properties of Mixed Oxide Nanotubes Grown by Anodization of Ti–Fe Alloys
Rui Liu
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorLongfei Jiang
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorChengyuan Li
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorPengze Li
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYu Zhang
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXufei Zhu
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Ye Song
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorRui Liu
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorLongfei Jiang
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorChengyuan Li
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorPengze Li
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYu Zhang
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXufei Zhu
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Ye Song
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorAbstract
Like titanium metal, nanotube array films can be grown on Ti alloys by anodization in fluoride-containing electrolytes. Further, the anodization of Ti alloys provide a unique pathway to dope TiO2 nanotubes with the alloying element. However, the details of anodization behaviors of Ti alloys and the obtained nanotubes for application in supercapacitors remain poorly understood. Herein, three Ti–Fe alloys containing different amounts of Fe element (10, 15, and 20 wt%) are fabricated by using a vacuum arc melting furnace. Their anodization behaviors are systematically investigated. The nanotube array films can be achieved on these alloys, which are composed of TiO2, Fe2O3, and Fe-doped TiO2. Their electrochemical behaviors are completely different from both the pure TiO2 and the pure Fe2O3. The mixed oxide nanotubes on Ti–15 wt%Fe have the maximum capacitance among the three Ti–Fe alloys, which is 3.75 times higher than that of pure TiO2. Moreover, the mixed oxide electrode exhibits high rate capability and excellent cycling stability with only 5.7% loss in capacitance over 10 000 cycles. The presented results suggest that the alloy anodization is an efficient strategy for enhancing the performance of TiO2 electrode materials for supercapacitors.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1N. Q. Fu, X. Z. Jiang, D. C. Chen, Y. D. Duan, G. G. Zhang, M. L. Chang, Y. Y. Fang, Y. Lin, Power Sources 2019, 439, 227076.
- 2S. Y. Cao, D. L. Yu, Y. Y. Lin, C. Zhang, L. F. Lu, M. Yin, X. F. Zhu, X. Y. Chen, D. D. Li, ACS Appl. Mater. Interfaces 2020, 12, 26184.
- 3Q. F. Gui, Z. Xu, H. F. Zhang, C. W. Cheng, X. F. Zhu, M. Yin, Y. Song, L. F. Lu, X. Y. Chen, D. D. Li, ACS Appl. Mater. Interfaces 2014, 6, 17053.
- 4Z. Xu, Y. Y. Lin, M. Yin, H. F. Zhang, C. W. Cheng, L. F. Lu, X. Z. Xue, H. J. Fan, X. Y. Chen, D. D. Li, Adv. Mater. Interfaces 2015, 2, 1500169.
- 5J. Xu, H. Wu, L. F. Lu, S. F. Leung, D. Chen, X. Y. Chen, Z. Y. Fan, G. Z. Shen, D. D. Li, Adv. Funct. Mater. 2014, 24, 1840.
- 6F. Y. Liu, X. Chu, H. T. Zhang, B. B. Zhang, H. Su, L. Jin, Z. X. Wang, H. C. Huang, W. Q. Yang, Electrochim. Acta 2018, 269, 102.
- 7Z. X. Wang, H. Su, F. Y. Liu, X. Chu, C. Yan, B. N. Gu, H. C. Huang, T. Yang, N. J. Chen, Y. Han, W. L. Deng, H. T. Zhang, W. Q. Yang, Electrochim. Acta 2019, 307, 302.
- 8Y. An, T. Liu, C. Li, X. Zhang, T. Hu, X. Sun, K. Wang, C. Wang, Y. Ma, J. Mater. Chem. A 2021, 9, 15654.
- 9M. F. Mousavi, M. S. Rahmanifar, A. Noori, E. Dadashpour, Y. Shabangoli, Energy Technol. 2021, 9, 2100645.
- 10S. H. Jiang, J. Ding, R. H. Wang, F. Y. Chen, J. Sun, Y. X. Deng, X. L. Li, Rare Met. 2021, 40, 3520.
- 11M. F. Iqbal, M. N. Ashiq, M. Zhang, Energy Technol. 2021, 9, 2000987.
- 12J. Zhang, Y. T. Yu, P. J. Fang, L. Liu, H. Y. Yue, J. L. Ou, A. J. Han, Electrochem. Commun. 2021, 129, 107086.
- 13H. M. Cui, Y. Chen, S. T. Lu, S. Y. Zhang, X. F. Zhu, Y. Song, Electrochim. Acta 2017, 253, 455.
- 14C. C. Raj, R. Sundheep, R. Prasanth, Electrochim. Acta 2015, 176, 1214.
- 15X. H. Lu, G. M. Wang, T. Zhai, M. H. Yu, J. Y. Gan, Y. X. Tong, Y. Li, Nano Lett. 2012, 12, 1690.
- 16S. M. Dong, X. Chen, L. Gu, X. H. Zhou, L. F. Li, Z. H. Liu, P. X. Han, H. X. Xu, J. H. Yao, H. B. Wang, X. Y. Zhang, C. Q. Shang, G. L. Cui, L. Q. Chen, Energy Environ. Sci. 2011, 4, 3502.
- 17H. Wu, C. Xu, J. Xu, L. F. Lu, Z. Y. Fan, X. Y. Chen, Y. Song, D. D. Li, Nanotechnology 2013, 24, 455401.
- 18H. Zhou, Y. R. Zhang, J. Power Sources 2013, 239, 128.
- 19H. Wu, D. D. Li, X. F. Zhu, C. Y. Yang, D. F. Liu, X. Y. Chen, Y. Song, L. F. Lu, Electrochim. Acta 2014, 116, 129.
- 20H. H. Cao, Q. Chen, T. T. Wang, Chin. J. Aeronaut. 2006, 19, S162.
- 21J. Osorio-Guillen, S. Lany, A. Zunger, Phys. Rev. Lett. 2008, 100, 036601.
- 22G. Shao, J. Phys. Chem. C 2009, 113, 6800.
- 23L. Wu, S. Cao, Z. Ying, W. Huang, D. Xu, X. F. Zhu, Y. Song, J. Electrochem. Soc. 2019, 166, A3889.
- 24Q. Q. Liu, Y. Yang, Y. N. Ni, Q. Wang, H. W. Yu, X. F. Zhu, Z. R. Ying, Y. Song, Appl. Surf. Sci. 2021, 570, 151175A.
- 25K. Y. Lee, A. Mazare, P. Schmuki, Chem. Rev. 2014, 114, 9385.
- 26M. Yang, D. H. Kim, H. Jha, K. Y. Lee, J. Paul, P. Schmuki, Chem. Commun. 2011, 47, 2032.
- 27K. Y. Lee, P. Schmuki, Electrochem. Commun. 2021, 25, 11.
- 28A. Ghicov, M. Yamamoto, P. Schmuki, Angew. Chem. 2008, 120, 8052.
10.1002/ange.200802598 Google Scholar
- 29M. S. Kim, H. Tsuchiya, T. Erami, S. Fujimoto, Mater. Trans. 2016, 57, 519.
- 30X. X. Wang, J. L. Zhao, Y. R. Kang, L. L. Li, X. R. Xu, J. Appl. Electrochem. 2014, 44, 1.
- 31J. D. Yu, Z. Wu, C. Gong, W. Xiao, L. Sun, C. J. Lin, Nanomaterials. 2016, 6, 107.
- 32M. Madian, Z. Y. Wang, I. Gonzalez-Martinez, S. Oswald, L. Giebeler, D. Mikhailova, Appl. Mater. 2020, 20, 100676.
- 33J. H. Kim, K. Zhu, Y. F. Yan, C. L. Perkins, A. J. Frank, Nano Lett. 2010, 10, 4099.
- 34H. M. Cui, W. Q. Huang, L. Z. Wu, S. K. Cao, Y. Song, J. Alloys Compd. 2019, 785, 19.
- 35T. J. LaTempa, X. J. Feng, M. Paulose, C. A. Grimes, J. Phys. Chem. 2009, 113, 16293.
- 36M. Ghidiu, R. Lukatskaya, M. Q. Zhao, Y. Gogots, M. W. Barsoum, Nature. 2014, 516, 78.
- 37L. Wang, X. Zhang, Y. Xu, C. Li, W. Liu, S. Yi, K. Wang, X. Sun, Z. S. Wu, Y. Ma, Adv. Funct. Mater. 2021, 31, 2104286.
- 38S. Yi, L. Wang, X. Zhang, C. Li, W. Liu, K. Wang, X. Sun, Y. Xu, Z. Yang, Y. Cao, J. Sun, Y. Ma, Sci. Bull. 2021, 66, 914.
- 39M. Salari, K. Konstantinov, K. L. Hua, J. Mater. Chem. 2011, 21, 5128.
- 40S. Watanabe, X. Ma, C. Song, J. Phys. Chem. C 2009, 113, 14249.
- 41B. M. Reddy, A. Khan, Catal. Surv. Asia 2005, 9, 155.
- 42G. Cheng, X. Liu, X. J. Song, X. Chen, W. X. Dai, R. S. Yuan, X. Z. Fu, Appl. Catal., B 2020, 77, 119196.
- 43B. Bharti, S. Kumar, H. N. Lee, R. Kumar, Sci. Rep. 2016, 6, 32355.
- 44Q. P. Wu, Q. Zheng, R. Krol, J. Phys. Chem. C 2012, 116, 7219.
- 45X. J. Yao, Y. Xiong, W. X. Zou, L. Zhang, S. G. Wu, X. Dong, F. Gao, Y. Deng, C. J. Tang, Z. Chen, L. Dong, Y. Chen, Appl. Catal., B 2014, 144, 152.
- 46Z. Hu, K. N. Li, X. F. Wu, N. Wang, X. F. Li, Q. Li, L. Li, K. L. Lv, Appl. Catal., B 2019, 256, 117860.
- 47H. Zhang, Z. J. Chen, Y. Song, M. Yin, D. D. Li, X. F. Zhu, X. Y. Chen, P. C. Chang, L. F. Lu, Electrochem. Commun. 2016, 68, 23.
- 48Z. Li, Y. T. Ding, W. J. Kang, C. Li, D. Lin, X. Y. Wang, W. Z. Chen, M. H. Wu, D. Y. Pan, Electrochim. Acta 2015, 161, 40.
- 49D. Y. Pan, H. Huang, X. Y. Wang, L. Wang, H. B. Liao, Z. Li, M. H. Wu, J. Mater. Chem. A. 2014, 2, 11454.
- 50H. Zhou, Y. R. Zhang, J. Phys. Chem. C 2014, 118, 5626.
- 51H. W. Fan, H. Zhang, X. L. Luo, M. Y. Liao, X. F. Zhu, J. Ma, Y. Song, J. Power Sources 2017, 357, 230.
- 52K. Y. Xie, J. Li, Y. Q. Lai, W. Lu, Z. A. Zhang, Y. X. Liu, L. M. Zhou, H. T. Huang, Electrochem. Commun. 2011, 13, 657.
- 53M. S. Wu, R. H. Lee, J. Electrochem. Soc. 2009, 156, A737.
- 54S. Shivakumara, T. R. Penki, N. Munichandraiah, ECS Electrochem. Lett. 2013, 2, A60.
- 55H. W. Wang, Z. J. Xu, H. Yi, H. G. Wei, Z. H. Guo, X. F. Wang, Nano Energy 2014, 7, 86.