Preparation of F and N Co-Doped Fe–N–C Catalyst and Evaluation of its Oxygen Reduction Performance
Xinfu He
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resource, Xi'an, 710021 China
Search for more papers by this authorLiaobo Chang
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorKeke Li
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorHongju Wu
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorYong Tang
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorFan Gao
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorXingtang Li
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorCorresponding Author
Yating Zhang
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resource, Xi'an, 710021 China
Search for more papers by this authorAnning Zhou
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resource, Xi'an, 710021 China
Search for more papers by this authorXinfu He
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resource, Xi'an, 710021 China
Search for more papers by this authorLiaobo Chang
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorKeke Li
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorHongju Wu
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorYong Tang
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorFan Gao
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorXingtang Li
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Search for more papers by this authorCorresponding Author
Yating Zhang
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resource, Xi'an, 710021 China
Search for more papers by this authorAnning Zhou
School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054 China
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resource, Xi'an, 710021 China
Search for more papers by this authorAbstract
The problems of underdeveloped pores and high electrochemical impedance of oxygen reduction reaction (ORR) catalysts need to be urgently addressed. Heteroatoms F and N are doped on precursor Fe-zeolitic imidazolate framework (ZIF)-8 to increase the activity of Fe-ZIF-8-derived porous carbon materials and a noble metal-free high-activity ORR catalyst F–N/FeNC with 3D interconnected porous structure and high conductivity is successfully prepared. Experiments show that the synergistic effect of CF ionic bonds, pyridinic-N, pyrrolic-N, graphitic-N, FeNx sites, and CF semi-ionic bonds in F–N/FeNC can improve the ORR activity of the F–N/FeNC. The developed F–N/FeNC is advantageous with excellent specific surface area, ultra-high electrical conductivity, and extremely high ORR mass transfer efficiency. As such, the F–N/FeNC has a high onset potential of 0.95 V (vs RHE) and a half-wave potential of 0.84 V (vs RHE), implying excellent ORR performance even better than commercially available Pt/C catalyst. In addition, the carefully prepared F–N/FeNC demonstrated higher long-term durability and excellent resistance to methanol influence compared with commercially available Pt/C catalyst. The developed strategy provides new insights into heteroatom-doped metal–organic frameworks as a precursor of ORR catalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
ente202200992-sup-0001-SuppData-S1.pdf1.6 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Primbs, Y. Sun, A. Roy, D. Malko, A. Mehmood, M.-T. Sougrati, P.-Y. Blanchard, G. Granozzi, T. Kosmala, G. Daniel, P. Atanassov, J. Sharman, C. Durante, A. Kucernak, D. Jones, F. Jaouen, P. Strasser, Energy Environ. 2020, 13, 2480.
- 2L. Osmieri, D. A. Cullen, H. T. Chung, R. K. Ahluwalia, K. C. Neyerlin, Nano Energy 2020, 78, 105209.
- 3F. Charreteur, F. Jaouen, S. Ruggeri, J.-P. Dodelet, Electrochim. Acta 2008, 53, 2925.
- 4T. Asset, P. Atanassov, Joule 2020, 4, 33.
- 5Q. Wang, T. Ina, W.-T. Chen, L. Shang, F. Sun, S. Wei, D. Sun-Waterhouse, S. G. Telfer, T. Zhang, G. I. N. Waterhouse, Sci. Bull. 2020, 65, 1743.
- 6P. Feng, J. Li, H. Wang, Z. Xu, ACS Omega 2020, 5, 24064.
- 7A. Muthurasu, A. P. Tiwari, K. Chhetri, B. Dahal, H. Y. Kim, Nano Energy 2021, 88, 106238.
- 8Y. W. Li, W. J. Zhang, J. Li, H. Y. Ma, H. M. Du, D. C. Li, S. N. Wang, J. S. Zhao, J. M. Dou, L. Xu, ACS Appl. Mater. Interfaces 2020, 12, 44710.
- 9Z. Zhu, H. Yin, Y. Wang, C. H. Chuang, L. Xing, M. Dong, Y. R. Lu, G. Casillas-Garcia, Y. Zheng, S. Chen, Y. Dou, P. Liu, Q. Cheng, H. Zhao, Adv. Mater. 2020, 32, 2004670.
- 10J. Lilloja, M. Mooste, E. Kibena-Põldsepp, A. Sarapuu, B. Zulevi, A. Kikas, H.-M. Piirsoo, A. Tamm, V. Kisand, S. Holdcroft, A. Serov, K. Tammeveski, J. Power Sources 2021, 8, 100052.
- 11S. Gouse Peera, H.-J. Kwon, T. G. Lee, A. M. Hussain, Ionics 2020, 26, 1563.
- 12J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Carbon 2020, 165, 434.
- 13L. Yan, Y. Xu, P. Chen, S. Zhang, H. Jiang, L. Yang, Y. Wang, L. Zhang, J. Shen, X. Zhao, L. Wang, Adv. Mater. 2020, 32, 2003313.
- 14S. Hanif, N. Iqbal, X. Shi, T. Noor, G. Ali, A. M. Kannan, Renewable Energy 2020, 154, 508.
- 15L. Osmieri, H. Wang, K. C. Neyerlin, J. Electrochem. Soc. 2021, 168, 014503.
- 16K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto, Nat. Nanotechnol. 2021, 16, 140.
- 17X. Ren, Y. Wang, A. Liu, Z. Zhang, Q. Lv, B. Liu, J. Mater. Chem. A 2020, 8, 24284.
- 18L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang, B. Y. Xia, Acc. Chem. Res. 2021, 54, 311.
- 19H. Zheng, Y. Zhang, J. Long, R. Li, X. Gou, J. Electrochem. Soc. 2020, 167, 084516.
- 20Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. 2020, 49, 3484.
- 21A. S. Ryabova, S. Y. Istomin, K. A. Dosaev, A. Bonnefont, J. Hadermann, N. A. Arkharova, A. S. Orekhov, R. P. Sena, V. A. Saveleva, G. Kéranguéven, E. V. Antipov, E. R. Savinova, G. A. Tsirlina, Electrochim. Acta 2021, 367, 137378.
- 22W. Fan, Z. Li, C. You, X. Zong, X. Tian, S. Miao, T. Shu, C. Li, S. Liao, Nano Energy 2017, 37, 187.
- 23L. Jiao, G. Wan, R. Zhang, H. Zhou, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. Engl. 2018, 57, 8525.
- 24H. Zhou, D. He, A. I. Saana, J. Yang, Z. Wang, J. Zhang, Q. Liang, S. Yuan, J. Zhu, S. Mu, Nanoscale 2018, 10, 6147.
- 25Y. Chen, R. Gokhale, A. Serov, K. Artyushkova, P. Atanassov, Nano Energy 2017, 38, 201.
- 26H. Tan, Y. Li, X. Jiang, J. Tang, Z. Wang, H. Qian, P. Mei, V. Malgras, Y. Bando, Y. Yamauchi, Nano Energy 2017, 36, 286.
- 27H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang, X. Xu, J. Wang, Y. Bando, Y. M. Kang, J. Tang, Y. Yamauchi, Adv. Sci. 2018, 5, 1800120.
- 28L. Zou, C. C. Hou, Z. Liu, H. Pang, Q. Xu, J. Am. Chem. Soc. 2018, 140, 15393.
- 29X. Chen, N. Wang, K. Shen, Y. Xie, Y. Tan, Y. Li, ACS Appl. Mater. Interfaces 2019, 11, 25976.
- 30D. H. Kim, S. Ringe, H. Kim, S. Kim, B. Kim, G. Bae, H. S. Oh, F. Jaouen, W. Kim, H. Kim, C. H. Choi, Nat. Commun. 2021, 12, 1856.
- 31L. Yang, X. Zeng, W. Wang, D. Cao, Adv. Funct. Mater. 2018, 28, 1704537.
- 32N. Ramaswamy, S. Mukerjee, Chem Rev 2019, 119, 11945.
- 33W. Xue, Q. Zhou, F. Li, B. S. Ondon, J. Power Sources 2019, 423, 9.
- 34K. Huang, Z. Yang, L. Liu, X. Yang, Y. Fan, M. Sun, C. Liu, W. Chen, J. Yang, Int. J. Hydrogen Energy 2021, 46, 24472.
- 35C. Shi, Y. Liu, R. Qi, J. Li, J. Zhu, R. Yu, S. Li, X. Hong, J. Wu, S. Xi, L. Zhou, L. Mai, Nano Energy 2021, 87, 106153.
- 36J. Wang, G. Han, L. Wang, L. Du, G. Chen, Y. Gao, Y. Ma, C. Du, X. Cheng, P. Zuo, G. Yin, Small 2018, 14, 1704282.
- 37Y. Xue, Y. Wang, Z. Pan, C. Zhang, J. Power Sources 2020, 451, 227747.
- 38X. Xie, L. Peng, H. Yang, G. I. N. Waterhouse, L. Shang, T. Zhang, Adv. Mater. 2021, 33, 2101038.
- 39P. G. Santori, F. D. Speck, S. Cherevko, H. A. Firouzjaie, X. Peng, W. E. Mustain, F. Jaouen, J. Electrochem. Soc 2020, 167, 134505.
- 40R. Wang, P. Zhang, Y. Wang, Y. Wang, K. Zaghib, Z. Zhou, Prog. Nat. Sci. Mater. 2020, 30, 855.
- 41A. Muthurasu, G. P. Ojha, M. Lee, H. Y. Kim, J. Phys. Chem. C 2020, 124, 14465.
- 42M. Huang, L. Wang, K. Pei, W. You, X. Yu, Z. Wu, R. Che, Small 2020, 16, 2000158.
- 43X. Hu, C. Wang, J. Li, R. Luo, C. Liu, X. Sun, J. Shen, W. Han, L. Wang, ACS Appl. Mater. Interfaces 2018, 10, 15051.
- 44H. Chen, K. Shen, Q. Mao, J. Chen, Y. Li, ACS Catal. 2018, 8, 1417.
- 45D. Ding, K. Shen, X. Chen, H. Chen, J. Chen, T. Fan, R. Wu, Y. Li, ACS Catal. 2018, 8, 7879.
- 46Y. Zhang, P. Wang, J. Yang, K. Li, X. Long, M. Li, K. Zhang, J. Qiu, Chem. Eng. J. 2020, 401, 126001.
- 47P. Kaur, G. Verma, S. S. Sekhon, Prog. Mater. Sci. 2019, 102, 1.
- 48C. Xuan, B. Hou, W. Xia, Z. Peng, T. Shen, H. L. Xin, G. Zhang, D. Wang, J. Mater. Chem. A 2018, 6, 10731.
- 49N. Zhang, T. Zhou, M. Chen, H. Feng, R. Yuan, C. A. Zhong, W. Yan, Y. Tian, X. Wu, W. Chu, C. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 111.
- 50H.-J. Zhang, X. Zhang, S. Yao, H. Hu, Z.-F. Ma, J. Yang, J. Electrochem. Soc. 2017, 164, H1081.
- 51S. K. Das, A. Kesh, S. Akula, A. K. Sahu, Energy Fuels 2022, 36, 2108.
- 52X. Zhang, Y. Chen, J. Wang, Q. Zhong, ChemistrySelect 2016, 1, 696.
- 53Y. Zhang, M. Yang, P. Wang, K. Li, S. Li, Z. Zhang, X. He, Y. Duan, J. Alloys Compd. 2022, 904, 164083.
- 54S. Akula, B. Balasubramaniam, P. Varathan, A. K. Sahu, ACS Appl. Energy Mater. 2019, 2, 3253.
- 55S. Akula, A. K. Sahu, J. Electrochem. Soc. 2019, 166, F93.
- 56Y. Deng, Y. Dong, G. Wang, K. Sun, X. Shi, L. Zheng, X. Li, S. Liao, ACS Appl. Mater. Interfaces 2017, 9, 9699.
- 57Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, ACS Catal. 2017, 7, 1655.
- 58K. Li, Y. Zhang, P. Wang, X. Long, L. Zheng, G. Liu, X. He, J. Qiu, J. Alloys Compd. 2022, 903, 163701.
- 59S. Wang, J. Qin, T. Meng, M. Cao, Nano Energy 2017, 39, 626.
- 60Y. Song, W. Qu, Y. He, H. Yang, M. Du, A. Wang, Q. Yang, Y. Chen, J. Energy Storage 2020, 32, 101877.
- 61Y. Zhang, N. Zhang, P. Wang, L. Shen, K. Li, S. Li, M. Yang, P. He, Int. J. Hydrogen Energy 2022, 47, 5474.
- 62Y. Zhang, P. Wang, J. Yang, K. Li, N. Zhang, G. Liu, Y. Duan, J. Qiu, J. Colloid Interface Sci. 2022, 613, 733.