Sb/N-Doped Carbon Nanofiber as a Sodium-Ion Battery Anode
Yan Gu
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Rong Chao Cui
SINOPEC Maoming Petrochemical CO., Ltd, Maoming, 525000 China
Search for more papers by this authorGuo Yong Wang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Chun Cheng Yang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorQing Jiang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorYan Gu
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Rong Chao Cui
SINOPEC Maoming Petrochemical CO., Ltd, Maoming, 525000 China
Search for more papers by this authorGuo Yong Wang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Chun Cheng Yang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorQing Jiang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022 China
Search for more papers by this authorAbstract
The electrochemical performance of sodium-ion battery (SIB), which is considered to have high potential to replace the lithium-ion battery, in cycling stability at large current density needs to be improved. Herein, a hybrid of antimony nanoparticles and nitrogen-doped hollow porous hard carbon nanofiber (Sb/N-HPCNF) is synthesized through electrospinning and in situ replacement. As an anode of SIB, Sb/N-HPCNF presents excellent cycling stability (281 mAh g−1 after 2000 cycles at 2 A g−1). Such a performance mainly stems from the hollow porous structure, which promotes the electrolyte diffusion along the pores and provides more active sites for Na+ insertion/extraction. This work provides an ingenious strategy for constructing well-designed structures for advanced energy storage technology.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ente202200746-sup-0001-SuppData-S1.pdf1.2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, A. Majumdar, Nature 2012, 488, 294.
- 2B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.
- 3W. T. Jing, Y. Zhang, Y. Gu, Y. F. Zhu, C. C. Yang, Q. Jiang, Matter 2019, 1, 720.
- 4C. Tang, Y. Liu, C. Xu, J. Zhu, X. Wei, L. Zhou, L. He, W. Yang, L. Mai, Adv. Funct. Mater. 2018, 28, 1704561.
- 5J. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
- 6M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947.
- 7H. G. Wang, W. Li, D. P. Liu, X. L. Feng, J. Wang, X. Y. Yang, X. B. Zhang, Y. Zhu, Y. Zhang, Adv. Mater. 2017, 29, 1703012.
- 8L. Fu, K. Tang, K. Song, P. A. van Aken, Y. Yu, J. Maier, Nanoscale 2014, 6, 1384.
- 9Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Adv. Energy Mater. 2016, 6, 1600659.
- 10R. C. Cui, B. Xu, H. J. Dong, C. C. Yang, Q. Jiang, Adv. Sci. 2020, 7, 1902547.
- 11R. R. Gaddam, A. H. Farokh Niaei, M. Hankel, D. J. Searles, N. A. Kumar, X. S. Zhao, J. Mater. Chem. A 2017, 5, 22186.
- 12J. B. Li, Z. B. Ding, L. K. Pan, J. L. Li, C. Y. Wang, G. X. Wang, Carbon 2021, 173, 31.
- 13K. T. Kim, G. Ali, K. Y. Chung, C. S. Yoon, H. Yashiro, Y. K. Sun, J. Lu, K. Amine, S. T. Myung, Nano Lett. 2014, 14, 416.
- 14M. N. Tahir, B. Oschmann, D. Buchholz, X. Dou, I. Lieberwirth, M. Panthofer, W. Tremel, R. Zentel, S. Passerini, Adv. Energy Mater. 2016, 6, 1501489.
- 15C. Zhang, X. Wang, Q. Liang, X. Liu, Q. Weng, J. Liu, Y. Yang, Z. Dai, K. Ding, Y. Bando, J. Tang, D. Golberg, Nano Lett. 2016, 16, 2054.
- 16J. Qin, T. Wang, D. Liu, E. Liu, N. Zhao, C. Shi, F. He, L. Ma, C. He, Adv. Mater. 2018, 30, 1704670.
- 17Y. Liu, N. Zhang, L. Jiao, J. Chen, Adv. Mater. 2015, 27, 6702.
- 18L. Wang, J. Li, D. Zhou, J. Li, Appl. Sci. 2017, 7, 38.
- 19N. Wang, Z. Bai, Y. Qian, J. Yang, Adv. Mater. 2016, 28, 4126.
- 20Z. Liu, X.-Y. Yu, X. W. Lou, U. Paik, Energ. Environ. Sci. 2016, 9, 2314.
- 21L. Cui, R. Luo, D. Ma, Materials 2018, 11, 538.
- 22J. Song, P. Yan, L. Luo, X. Qi, X. Rong, J. Zheng, B. Xiao, S. Feng, C. Wang, Y.-S. Hu, Y. Lin, V. L. Sprenkle, X. Li, Nano Energy 2017, 40, 504.
- 23L. Xu, H. Sitinamaluwa, H. Li, J. Qiu, Y. Wang, C. Yan, H. Li, S. Yuan, S. Zhang, J. Mater. Chem. A 2017, 5, 2102.
- 24S. Yuan, X. L. Huang, D. L. Ma, H. G. Wang, F. Z. Meng, X. B. Zhang, Adv. Mater. 2014, 26, 2273.
- 25N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, Adv. Energy Mater. 2015, 5, 1401123.
- 26C. C. Yang, D. M. Zhang, L. Du, Q. Jiang, J. Mater. Chem. A 2018, 6, 12663.
- 27J. S. Cho, J. M. Won, J.-K. Lee, Y. C. Kang, Nano Energy 2016, 26, 466.
- 28X. Liu, K. Zhang, K. Lei, F. Li, Z. Tao, J. Chen, Nano Res. 2016, 9, 198.
- 29C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Adv. Mater. 2016, 28, 7276.
- 30J. Chen, S. Li, V. Kumar, P. S. Lee, Adv. Energy Mater. 2017, 7, 1700180.
- 31L. Li, S. Peng, N. Bucher, H.-Y. Chen, N. Shen, A. Nagasubramanian, E. Eldho, S. Hartung, S. Ramakrishna, M. Srinivasan, Nano Energy 2017, 37, 81.
- 32J. L. Li, W. Qin, J. P. Xie, R. Lin, Z. L. Wang, L. K. Pan, W. J. Mai, Chem. Eng. J. 2018, 332, 260.
- 33Y. J. Zhang, J. L. Li, L. A. Ma, H. B. Li, X. T. Xu, X. J. Liu, T. Lu, L. K. Pan, Chem. Eng. J. 2022, 427, 130936.
- 34J. B. Li, Z. B. Ding, J. L. Li, C. Y. Wang, L. K. Pan, G. X. Wang, Chem. Eng. J. 2021, 407, 127199.
- 35D. A. Stevens, J. Electrochem. Soc. 2001, 148, A803.
- 36M. Du, K. Rui, Y. Chang, Y. Zhang, Z. Ma, W. Sun, Q. Yan, J. Zhu, W. Huang, Small 2018, 14, 1700180.
- 37X. Shi, H. Song, A. Li, X. Chen, J. Zhou, Z. Ma, J. Mater. Chem. A 2017, 5, 5873.
- 38L.-F. Chen, Y. Lu, L. Yu, X. W. Lou, Energ. Environ. Sci. 2017, 10, 1777.
- 39Z. Yi, Q. Han, P. Zan, Y. Wu, Y. Cheng, L. Wang, J. Power Sources 2016, 331, 16.
- 40L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, Energ. Environ. Sci. 2014, 7, 323.
- 41Y. Yang, X. Yang, Y. Zhang, H. Hou, M. Jing, Y. Zhu, L. Fang, Q. Chen, X. Ji, J. Power Sources 2015, 282, 358.
- 42J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang, S. J. Shi, J. Power Sources 2010, 195, 313.
- 43N. Sun, H. Liu, B. Xu, J. Mater. Chem. A 2015, 3, 20560.
- 44Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, J. Liu, Nano Lett. 2012, 12, 3783.
- 45K. Liang, Y. R. Ren, Rare Met. 2022, 41, 1406.
- 46H. Ying, S. Zhang, Z. Meng, Z. Sun, W.-Q. Han, J. Mater. Chem. A 2017, 5, 8334.
- 47Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Adv. Funct. Mater. 2015, 25, 214.
- 48L. Hu, X. Zhu, Y. Du, Y. Li, X. Zhou, J. A. Bao, Chem. Mater. 2015, 27, 8138.
- 49Z. Yi, Q. G. Han, X. Li, Y. M. Wu, Y. Cheng, L. M. Wang, Chem. Eng. J. 2017, 315, 101.
- 50X. Z. Zhou, Z. F. Zhang, J. W. Wang, Q. T. Wang, G. F. Ma, Z. Q. Lei, J. Alloy. Compd. 2017, 699, 611.
- 51W. Luo, F. Li, J.-J. Gaumet, P. Magri, S. Diliberto, L. Zhou, L. Mai, Adv. Energy Mater. 2018, 8, 1703237.
- 52Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, Nano Lett. 2016, 16, 3321.
- 53L. Bodenes, A. Darwiche, L. Monconduit, H. Martinez, J. Power Sources 2015, 273, 14.
- 54X. Y. Chen, C. Y. Liu, Y. J. Fang, X. P. Ai, F. P. Zhong, H. X. Yang, Y. L. Cao, Carbon Energy, https://doi.org/10.1002/cey2.196.
10.1002/cey2.196 Google Scholar
- 55X. L. Sun, W. P. Si, X. H. Liu, J. W. Deng, L. X. Xi, L. F. Liu, C. L. Yan, O. G. Schmidt, Nano Energy 2014, 9, 168.
- 56W. Zhang, Y. Liu, C. Chen, Z. Li, Y. Huang, X. Hu, Small 2015, 11, 3822.
- 57M. Wang, Z. Yang, J. Wang, W. Li, L. Gu, Y. Yu, Small 2015, 11, 5381.
- 58X. Zhou, Z. Dai, J. Bao, Y.-G. Guo, J. Mater. Chem. A 2013, 1, 13727.
- 59Q. Liu, Y. Yan, X. Chu, Y. Zhang, L. Xue, W. Zhang, J. Mater. Chem. A 2017, 5, 21328.
- 60J. Wang, Y. S. Li, P. Liu, F. Wang, Q. R. Yao, Y. J. Zou, H. Y. Zhou, M.-S. Balogun, J. Q. Deng, J. Cent. South Univ. 2021, 28, 361.
- 61W. Ren, X. Yao, C. Niu, Z. Zheng, K. Zhao, Q. An, Q. Wei, M. Yan, L. Zhang, L. Mai, Nano Energy 2016, 28, 216.