Recent Research Advances in Ruthenium-Based Electrocatalysts for Water Electrolysis Across the pH-Universal Conditions
Xi-Zheng Fan
College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Qing-Qing Pang
College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001 China
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXi-Zheng Fan
College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Qing-Qing Pang
College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001 China
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorAbstract
Electrocatalytic water splitting including oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as a mild, green, and sustainable technology, is recognized as a great potential pathway to defeat the current environmental and energy-related crisis. Electrode materials resisting the corrosion of electrolytes in the full pH range are attracting the attention of the research community, which can adapt to more complicated conditions and significantly reduce expenditure. Accordingly, considerable efforts have been made to upgrade the availability of pH-universal electrode materials. Ruthenium-based materials with prominent activity, pH-universal window, cheaper price, etc. have been universally acknowledged to be the feasible alternative to platinum. Herein, the recent knowledge of the Ru-based electrocatalysts toward HER, OER, and overall water splitting across all pH conditions, including reaction mechanism, construction of advanced electrocatalysts, and regulation strategy of activity is focused. Finally, the current challenges and future prospects are highlighted, aiming to guide the design and synthesis of the universal pH-stable Ru-based electrocatalysts.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) J. Gong, C. Li, M. R. Wasielewski, Chem. Soc. Rev. 2019, 48, 1862; b) C. Hu, L. Zhang, J. Gong, Energy Environ. Sci. 2019, 12, 2620; c) J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Prog. Mater. Sci. 2021, 116, 100717; d) X. Xu, C. Su, Z. Shao, Energy Fuel. 2021, 35, 13585.
- 2a) J. Qi, W. Zhang, R. Cao, Adv. Energy Mater. 2018, 8, 1701620; b) I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shahd, K. R. Ward, Energy Environ. Sci. 2019, 12, 463; c) A. Kumar, P. Daw, D. Milstein, Chem. Rev. 2022, 122, 385; d) D. Guan, J. Zhong, H. Xu, Y.-C. Huang, Z. Hu, B. Chen, Y. Zhang, M. Ni, X. Xu, W. Zhou, Z. Shao, Appl. Phys. Rev. 2022, 9, 011422.
- 3a) F. Liu, C. Shi, X. Guo, Z. He, L. Pan, Z.-F. Huang, X. Zhang, J.-J. Zou, Adv. Sci. 2022, 9, 2200307; b) H. Duan, D. Li, Y. Tang, Y. He, S. Ji, R. Wang, H. Lv, P. P. Lopes, A. P. Paulikas, H. Li, S. X. Mao, C. Wang, N. M. Markovic, J. Li, V. R. Stamenkovic, Y. Li, J. Am. Chem. Soc. 2017, 139, 5494; c) M. Wang, L. Zhang, Y. He, H. Zhu, J. Mater. Chem. A 2021, 9, 5320; d) Z. Zhang, X. Wu, Z. Kou, N. Song, G. Nie, C. Wang, F. Verpoort, S. Mu, Chem. Eng. J. 2022, 428, 131133; e) J. Zhang, Q. Zhang, X. Feng, Adv. Mater. 2019, 31, 1808167.
- 4a) F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, R. Palkovits, J. Energy Chem. 2022, 69, 301; b) W.-J. Jiang, T. Tang, Y. Zhang, J.-S. Hu, Acc. Chem. Res. 2020, 53, 1111; c) X. Xu, Y. Pan, Y. Zhong, C. Shi, D. Guan, L. Ge, Z. Hu, Y.-Y. Chin, H.-J. Lin, C.-T. Chen, H. Wang, S. P. Jiang, Z. Shao, Adv. Sci. 2022, 9, 2200530.
- 5I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159.
- 6a) L. Li, P. Wang, Q. Shao, X. Huang, Adv. Mater. 2021, 33, 2004243;
b) L. She, G. Zhao, T. Ma, J. Chen, W. Sun, H. Pan, Adv. Funct. Mater. 2022, 32, 2108465;
c) Y. Li, B. Huang, Y. Sun, M. Luo, Y. Yang, Y. Qin, L. Wang, C. Li, F. Lv, W. Zhang, S. Guo, Small 2019, 15, 1804212;
d) H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou, Z. Shao, Energy Environ. Mater. 2022, https://doi.org/10.1002/eem2.12441.
10.1002/eem2.12441 Google Scholar
- 7G. Janani, H. Choi, S. Surendran, U. Sim, MRS Bull. 2020, 45, 539.
- 8a) S. Niu, S. Li, Y. Du, X. Han, P. Xu, ACS Energy Lett. 2020, 5, 1083; b) S.-K. Jung, I. Hwang, I. R. Choi, G. Yoon, J. H. Park, K.-Y. Park, K. Kang, Adv. Energy Mater. 2019, 9, 1900503.
- 9a) J. N. Hansen, H. Prats, K. K. Toudahl, N. M. Secher, K. Chan, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 2021, 6, 1175; b) K. A. Stoerzinger, O. Diaz-Morales, M. Kolb, R. R. Rao, R. Frydendal, L. Qiao, X. R. Wang, N. B. Halck, J. Rossmeisl, H. A. Hansen, T. Vegge, I. E. L. Stephens, M. T. M. Koper, Y. Shao-Horn, ACS Energy Lett. 2017, 2, 876; c) W. Cao, Y. Xu, Z. Wang, J. Luo, M. A. Khan, L. Zhang, D. Ye, H. Zhao, J. Zhang, J. Electrochem. Soc. 2020, 167, 104511.
- 10a) S. Anantharaj, P. E. Karthik, B. Subramanian, S. Kundu, ACS Catal. 2016, 6, 4660; b) S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao, P. Xu, Appl. Catal. B Environ. 2021, 297, 120442.
- 11a) X. Luo, P. Ji, P. Wang, R. Cheng, D. Chen, C. Lin, J. Zhang, J. He, Z. Shi, N. Li, S. Xiao, S. Mu, Adv. Energy Mater. 2020, 10, 1903891; b) H. Ma, Z. Chen, Z. Wang, C. V. Singh, Q. Jiang, Adv. Sci. 2022, 9, 2105313; c) K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int. Edit. 2019, 58, 1252; d) H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, Appl. Catal. B Environ. 2020, 261, 118240; e) J. Xie, J. Xin, R. Wang, X. Zhang, F. Lei, H. Qu, P. Hao, G. Cui, B. Tang, Y. Xie, Nano Energy 2018, 53, 74; f) S. Ghosh, S. R. Kadam, S. L. Kolatkar, A. Neyman, C. Singh, A. N. Enyashin, R. Bar-Ziv, M. Bar-Sadan, ACS Appl. Mater. Inter. 2022, 14, 581.
- 12a) Q. Tang, D. Jiang, ACS Catal. 2016, 6, 4953; b) Z. Wang, M. T. Tang, A. Cao, K. Chan, J. K. Nørskov, J. Phys. Chem. C 2022, 126, 5151; c) X. Xu, H. Sun, S. P. Jiang, Z. Shao, SusMat. 2021, 1, 460; d) Q. Du, M. A. Khan, J. Zhu, H. Zhao, J. Fang, D. Ye, J. Zhang, Chem.-Asian J. 2022, 17, 202200035.
- 13a) J. Kim, H. J. Kim, B. Ruqia, M. J. Kim, Y.-J. Jang, T. H. Jo, H. Baik, H.-S. Oh, H.-S. Chung, K. Baek, S. Noh, M. Jung, K. Kim, H.-K. Lim, Y.-S. Youn, S.-I. Choi, Adv. Mater. 2021, 33, 2105248; b) P. Su, W. Pei, X. Wang, Y. Ma, Q. Jiang, J. Liang, S. Zhou, J. Zhao, J. Liu, G. Q. Lu, Angew. Chem. Int. Edit. 2021, 60, 16044; c) S. Ye, F. Luo, T. Xu, P. Zhang, H. Shi, S. Qin, J. Wu, C. He, X. Ouyang, Q. Zhang, J. Liu, X. Sun, Nano Energy 2020, 6, 104301; d) J.-Q. Chi, X.-Y. Zhang, X. Ma, B. Dong, J.-Q. Zhang, B-.Y. Guo, M. Yang, L. Wang, Y.-M. Chai, C. Liu, ACS Sustain. Chem. Eng. 2019, 7, 17714.
- 14a) F. Zhu, J. Xue, L. Zeng, J. Shang, S. Lu, X. Cao, B. F. Abrahams, H. Gu, J. Lang, Nano Res. 2022, 15, 1020; b) A. Kong, M. Peng, H. Gu, S. Zhao, Y. Lv, M. Liu, Y. Sun, S. Dai, Y. Fu, J. Zhang, W. Li, Chem. Eng. J. 2021, 426, 131234; c) X. Peng, S. Zhao, Y. Mi, L. Han, X. Liu, D. Qi, J. Sun, Y. Liu, H. Bao, L. Zhuo, H. L. Xin, J. Luo, X. Sun, Small 2020, 16, 2002888; d) K. Yang, P. Xu, Z. Lin, Y. Yang, P. Jiang, C. Wang, S. Liu, S. Gong, L. Hu, Q. Chen, Small 2018, 14, 1803009; e) F. Luo, L. Guo, Y. Xie, J. Xu, K. Qu, Z. Yang, Appl. Catal. B-Environ. 2020, 279, 119394.
- 15a) X. Zheng, M. Qin, S. Ma, Y. Chen, H. Ning, R. Yang, S. Mao, Y. Wang, Adv. Sci. 2022, 9, 2104636; b) Q. Wang, C.-Q. Xu, W. Liu, S.-F. Hung, H. B. Yang, J. Gao, W. Cai, H. M. Chen, J. Li, B. Liu, Nat. Commun. 2020, 11, 4246; c) W. Cheng, H. Zhang, X. Zhao, H. Su, F. Tang, J. Tian, Q. Liu, J. Mater. Chem. A 2018, 6, 9420; d) T. L. L. Doan, D. C. Nguyen, S. Prabhakaran, D. H. Kim, D. T. Tran, N. H. Kim, J. H. Lee, Adv. Funct. Mater. 2021, 31, 2100233; e) Y. Zhao, J. Bai, X.-R. Wu, P. Chen, P.-J. Jin, H.-C. Yao, Yu Chen, J. Mater. Chem. A 2021, 7, 16437.
- 16a) C. Senthil, C. W. Lee, Renew. Sust. Energy Rev. 2021, 137, 110464; b) D. Liu, Y. Zhang, Matter-US 2021, 4, 2678.
- 17a) R. Xiao, J. Chen, K. Fu, X. Zheng, T. Wang, J. Zheng, X. Li, Angew. Chem. Int. Edit. 2018, 57, 2219; b) X.-Y. Zhang, B.-Y. Guo, F.-T. Li, B. Dong, J.-Q. Zhang, X. Ma, J.-Y. Xie, M. Yang, Y.-M. Chai, C.-G. Liu, Int. J. Hydrogen Energy 2019, 44, 21683.
- 18N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.
- 19a) H. Q. Fu, M. Zhou, P. F. Liu, P. Liu, H. Yin, K. Z. Sun, H. G. Yang, M. Al-Mamun, P. Hu, H.-F. Wang, H. Zhao, J. Am. Chem. Soc. 2022, 144, 6028; b) Y. M. Hao, H. Nakajima, A. Inada, K. Sasaki, K. Ito, Electrochim. Acta 2019, 301, 274.
- 20a) Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du, P. Rao, R. Li, C. Jia, Z. Kang, P. Deng, Y. Shen, X. Tian, Nano-Micro Lett. 2021, 13, 1; b) J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, M. Ni, ACS Catal. 2019, 9, 9973.
- 21a) Y. H. Fang, Z. P. Liu, ACS Catal. 2014, 4, 4364; b) S. Anantharaj, S. Noda, M. Driess, P. W. Menezes, ACS Energy Lett. 2021, 6, 1607.
- 22a) C. Wang, L. Jin, H. Shang, H. Xu, Y. Shiraishi, Y. Du, Chinese Chem. Lett. 2021, 32, 2108; b) O. Diaz-Morales, F. Calle-Vallejo, C. Munck, M. T. M. Koper, Chem Sci. 2013, 4, 2334.
- 23H. J. Song, H. Yoon, B. Ju, D.-W. Kim, Adv. Energy Mater. 2020, 11, 2002428.
- 24a) V. Q. Bui, A. Kumar, H. T. D. Bui, J. Lee, Y. Hwang, H. M. Le, Y. Kawazoe, H. Lee, Chem. Mater. 2020, 32, 9591; b) M. Yao, B. Wang, B. Sun, L. Luo, Y. Chen, J. Wang, N. Wang, S. Komarneni, X. Niu, W. Hu, Appl. Catal. B Environ. 2021, 280, 119451; c) L. Wang, N. Ma, N. Wu, X. Wang, J. Xin, D. Wang, J. Lin, X. Li, J. Sun, ACS Appl. Mater. Inter. 2021, 13, 25461.
- 25a) W. J. Kang, Y. Feng, Z. Li, W.-Q. Yang, C.-Q. Cheng, Z.-Z. Shi, P.-F. Yin, G.-R. Shen, J. Yang, C.-K. Dong, H. Liu, F.-X. Ye, X.-W. Du, Adv. Mater. 2022, 32, 2112367; b) S. L. Fereja, P. Li, J. Guo, Z. Fang, Z. Zhang, Z. Zhuang, X. Zhang, K. Liu, W. Chen, ACS Appl. Nano Mater. 2021, 4, 5992.
- 26H. E. Hoster, MRS Online Proc. Library 2012, 1388.
- 27a) S.-Y. Bae, J. Mahmood, I.-Y. Jeon, J.-B. Baek, Nanoscale Horiz. 2020, 5, 43; b) W. Yu, Z. Chen, W. Xiao, Y. Chai, B. Dong, Z. Wu, L. Wang, Inorg. Chem. Front. 2022, 9, 1847.
- 28a) X.-Z. Fan, Q.-Q. Pang, ChemElectroChem 2021, 8, 4472; b) J.-Q. Chi, X.-Y. Zhang, X. Ma, B. Dong, J.-Q. Zhang, B.-Y. Guo, M. Yang, L. Wang, Y.-M. Chai, C. Liu, ACS Sustain. Chem. Eng. 2016, 7, 17714; c) W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Nano Energy 2016, 28, 29; d) F. Li, G.-F. Han, H.-J. Noh, I. Ahmad, I.-Y. Jeon, J.-B. Baek, Adv. Mater. 2018, 30, 1803676.
- 29J. Mahmood, F. Li, S.-M. Jung, M. S. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Y. Jeong, J.-B. Baek, Nat. Nanotechnol. 2017, 12, 441.
- 30Y. Liu, Y. Yang, Z. Peng, Z. Liu, Z. Chen, L. Shang, S. Lu, T. Zhang, Nano Energy 2019, 65, 104023.
- 31W. Li, H. Zhang, K. Zhang, W. Hu, Z. Cheng, H. Chen, X. Feng, T. Peng, Z. Kou, Appl. Catal. B Environ. 2022, 306, 121095.
- 32Y.-L. Wu, X. Li, Y.-S. Wei, Z. Fu, W. Wei, X.-T. Wu, Q.-L. Zhu, Q. Xu, Adv. Mater. 2021, 33, 2006965.
- 33J. Xu, X. Kong, Small Methods 2022, 6, 2101432.
- 34Y.-B. Jeong, S. H. Ahn, Chem. Eng. J. 2022, 437, 135322.
- 35a) S. Han, Q. Yun, S. Tu, L. Zhu, W. Cao, Q. Lu, J. Mater. Chem. A 2019, 7, 24691; b) W. Luo, Y. Wang, C. Cheng, Mater. Today Phys. 2020, 15, 100274.
- 36a) J. Shan, T. Ling, K. Davey, Y. Zheng, S.-Z. Qiao, Adv. Mater. 2019, 31, 1900510; b) B. Pang, X. Liu, T. Liu, T. Chen, X. Shen, W. Zhang, S. Wang, T. Liu, D. Liu, T. Ding, Z. Liao, Y. Li, C. Liang, T. Yao, Energy Environ. Sci. 2022, 15, 102; c) D. Zhang, H. Zhao, B. Huang, B. Li, H. Li, Y. Han, Z. Wang, X. Wu, Y. Pan, Y. Sun, X. Sun, J. Lai, L. Wang, ACS Cent. Sci. 2019, 5, 1991; d) M. Khalid, X. Zarate, M. Saavedra-Torres, E. Schott, A. M. B. Honorato, M. R. Hatshan, H. Varela, Chem. Eng. J. 2021, 421, 129987.
- 37X. Mu, J. Gu, F. Feng, Z. Xiao, C. Chen, S. Liu, S. Mu, Adv. Sci. 2020, 8, 2002341.
10.1002/advs.202002341 Google Scholar
- 38a) F. Zhang, Y. Zhu, Y. Chen, Y. Lu, Q. Lin, L. Zhang, S. Tao, X. Zhang, H. Wang, J. Mater. Chem. A 2020, 8, 12810; b) T. Feng, G. Yu, S. Tao, S. Zhu, R. Ku, R. Zhang, Q. Zeng, M. Yang, Y. Chen, W. Chen, W. Chen, B. Yang, J. Mater. Chem. A 2020, 8, 9638; c) Y. Xu, S. Yin, C. Li, K. Deng, H. Xue, X. Li, H. Wang, J. Mater. Chem. A 2018, 6, 1376; d) G. Liu, W. Zhou, B. Chen, Q. Zhang, X. Cui, B. Li, Z. Lai, Y. Chen, Z. Zhang, L. Gu, H. Zhang, Nano Energy 2019, 66, 104173.
- 39W. Wu, Y. Wu, D. Zheng, K. Wang, Z. Tang, Electrochim. Acta 2019, 320, 134568.
- 40Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang, S. Lu, Angew. Chem. Int. Ed. 2020, 59, 1718.
- 41S. Zhang, Y. Rui, X. Zhang, R. Sa, F. Zhou, R. Wang, X. Li, Chem. Eng. J. 2021, 417, 128047.
- 42J. Jiao, N.-N. Zhang, C. Zhang, N. Sun, Y. Pan, C. Chen, J. Li, M. Tan, R. Cui, Z. Shi, J. Zhang, H. Xiao, T. Lu, Adv. Sci. 2022, 9, 2200010.
- 43H. Wang, M. Zhou, X. Bo, L. Guo, Electrochim. Acta 2021, 382, 138337.
- 44Y. Xu, Y. Li, S. Yin, H. Yu, H. Xue, X. Li, H. Wang, L. Wang, Nanotechnology 2018, 29, 225403.
- 45a) L. An, L. Bai, Y. Sun, L. Tang, L. Ma, J. Guo, Q. Liu, X. Zhang, Appl. Surf. Sci. 2020, 520, 146363; b) F. Zhou, R. Sa, X. Zhang, S. Zhang, Z. Wen, R. Wang, Appl. Catal. B Environ. 2020, 274, 119092; c) B.-Y. Guo, X.-Y. Zhang, J.-Y. Xie, Y.-H. Shan, R.-Y. Fan, W.-L. Yu, M.-X. Li, D.-P. Liu, Y.-M. Chai, B. Dong, Int. J. Hydrogen Energy 2021, 46, 7964; d) J.-S. Li, J.-Y. Li, M.-J. Huang, L.-X. Kong, Z. Wu, Carbon 2020, 161, 44.
- 46J.-S. Li, M.-J. Huang, Y.-W. Zhou, X.-N. Chen, S. Yang, J.-Y. Zhu, G.-D. Liu, L.-J. Ma, S.-H. Cai, J.-Y. Han, J. Mater. Chem. A 2021, 9, 12276.
- 47a) Q. Chang, J. Ma, Y. Zhu, Z. Li, D. Xu, W. Peng, G. Zhang, Y. Li, X. Fan, F. Zhang, ACS Sustain. Chem. Eng. 2018, 6, 6388; b) Q. Qian, W. Wang, G. Wang, X. He, Y. Feng, Z. Li, Y. Zhu, Y. Zhang, G. Zhang, Small 2022, 18, 2200242.
- 48D. Chen, R. Yu, R. Lu, Z. Pu, P. Wang, J. Zhu, P. Ji, D. Wu, J. Wu, Y. Zhao, Z. Kou, J. Yu, S. Mu, InfoMat 2022, 4, 12287.
- 49Y. Gao, Z. Chen, Y. Zhao, W. Yu, X. Jiang, M. He, Z. Li, T. Ma, Z. Wu, L. Wang, Appl. Catal. B Environ. 2022, 303, 120879.
- 50C. Wang, L. Qi, ACS Mater. Lett. 2021, 3, 1695.
- 51D. Zheng, C. Lv, X. Zhang, S. Chen, H. Liu, Y. Sun, X. She, D. Li, D. Yang, Mater. Today Sustain. 2021, 13, 100074.
10.1016/j.mtsust.2021.100074 Google Scholar
- 52a) J. Yu, Y. Guo, S. Miao, M. Ni, W. Zhou, Z. Shao, ACS Appl. Mater. Inter. 2018, 10, 34098; b) Y. Li, J. Li, J. Chen, P. Cai, G. Wang, Y. Hou, L. Lei, Z. Wen, J. Power Sources 2020, 472, 228625; c) P. Li, X. Duan, S. Wang, L. Zheng, Y. Li, H. Duan, Y. Kuang, X. Sun, Small 2019, 15, 1904043.
- 53a) J. Tang, B. Wang, Y. Zhang, X. Zhang, Q. Shen, J. Qin, S. Xue, X. Guo, C. Du, J. Chen, J. Mater. Chem. A 2022, 10, 4181; b) Y. Qiao, P. Yuan, C.-W. Pao, Y. Cheng, Z. Pu, Q. Xu, S. Mu, J. Zhang, Nano Energy 2020, 75, 104881; c) D. Chen, T. Liu, P. Wang, J. Zhao, C. Zhang, R. Cheng, W. Li, P. Ji, Z. Pu, S. Mu, ACS Energy Lett. 2020, 5, 2909; d) F. Guo, Y. Wu, X. Ai, H. Chen, G.-D. Li, W. Chen, X. Zou, Chem. Commun. 2019, 55, 8627; e) X. Zou, L. Wang, X. Ai, H. Chen, X. Zou, Chem. Commun. 2020, 56, 3061; f) Y. Yu, S. Yang, M. Dou, Z. Zhang, F. Wang, J. Mater. Chem. A 2020, 8, 16669.
- 54Y. Dang, T. Wu, H. Tan, J. Wang, C. Cui, P. Kerns, W. Zhao, L. Posada, L. Wen, S. L. Suib, Energy Environ. Sci. 2021, 14, 5433.
- 55Y. Zhao, X. Zhang, Y. Gao, Z. Chen, Z. Li, T. Ma, Z. Wu, L. Wang, S. Feng, Small 2022, 18, 2105168.
- 56a) V. Ramalingam, P. Varadhan, H.-C. Fu, H. Kim, D. Zhang, S. Chen, L. Song, D. Ma, Y. Wang, H. N. Alshareef, J.-H. He, Adv. Mater. 2019, 31, 1903841; b) J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2018, 57, 9495; c) A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65.
- 57D. Wang, Q. Li, C. Han, Z. Xing, X. Yang, Appl. Catal. B Environ. 2019, 249, 91.
- 58J. Wang, W. Fang, Y. Hu, Y. Zhang, J. Dang, Y. Wu, B. Chen, H. Zhao, Z. Li, Appl. Catal. B Environ. 2021, 298, 120490.
- 59K. Wu, K. Sun, S. Liu, W.-C. Cheong, Z. Chen, C. Zhang, Y. Pan, Y. Cheng, Z. Zhuang, X. Wei, Y. Wang, L. Zheng, Q. Zhang, D. Wang, Q. Peng, C. Chen, Y. Li, Nano Energy 2021, 80, 105467.
- 60a) J. Zhang, E. Wang, S. Cui, S. Yang, X. Zou, Y. Gong, Nano Lett. 2022, 22, 1398; b) Z. Kang, M. A. Khan, Y. Gong, R. Javed, Y. Xu, D. Ye, H. Zhao, J. Zhang, J. Mater. Chem. A 2021, 9, 6089.
- 61H. Liu, Z. Hu, Q. Liu, P. Sun, Y. Wang, S. Chou, Z. Hu, Z. Zhang, J. Mater. Chem. A 2020, 8, 24710.
- 62Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li, C.-Y. Su, Nat. Commun. 2021, 12, 1369.
- 63J. Xu, Z. Lian, B. Wei, Y. Li, O. Bondarchuk, N. Zhang, Z. Yu, A. Araujo, I. Amorim, Z. Wang, B. Li, L. Liu, ACS Catal. 2020, 10, 3571.
- 64a) H. Jin, S. Choi, G. J. Bang, T. Kwon, H. S. Kim, S. J. Lee, Y. Hong, D. W. Lee, H. S. Park, H. Baik, Y. Jung, S. J. Yoo, K. Lee, Energy Environ. Sci. 2022, 15, 1119; b) F. Zhou, L. Zhang, J. Li, Q. Wang, Y. Chen, H. Chen, G. Lu, G. Chen, H. Jin, S. Wang, J. Wang, Eng. Rep. 2021, 12437; c) K. A. Stoerzinger, R. A. R. Rao, X. R. Wang, W. T. Hong, C. M. Rouleau, Y. Shao-Horn, Chem 2017, 2, 668; d) B.-Y. Guo, X.-Y. Zhang, X. Ma, T.-S. Chen, Y. Chen, M.-L. Wen, J.-F. Qin, J. Nan, Y.-M. Chai, B. Dong, Int. J. Hydrogen Energy 2020, 45, 9575.
- 65T. Bhowmik, M. K. Kundu, S. Barman, ACS Appl. Mater. Inter. 2016, 8, 28678.
- 66Y. Li, Y. Wang, J. Lu, B. Yang, X. San, Z. Wu, Nano Energy 2020, 78, 105185.
- 67L. Zhang, H. Zhang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu, J. Cho, Angew. Chem., Int. Ed. 2021, 60, 18821.
- 68a) B. Tang, X. Yang, Z. Kang, L. Feng, Appl. Catal. B Environ. 2020, 278, 119281; b) S.-C. Sun, H. Jiang, Z.-Y. Chen, Q. Chen, M.-Y. Ma, L. Zhen, B. Song, C.-Y. Xu, Angew. Chem. Int. Ed. 2022, 61, e202202519; c) M. A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, J. Zhang, Electrochem. Energy Rev. 2018, 1, 483.
- 69S. Yan, W. Liao, M. Zhong, W. Li, C. Wang, N. Pinna, W. Chen, X. Lu, Appl. Catal. B Environ. 2022, 307, 121199.
- 70L. Sun, Q. Luo, Z. Dai, F. Ma, Chem. Rev. 2021, 444, 214049.
- 71M. Zhang, J. Chen, H. Li, P. Cai, Y. Li, Z. Wen, Nano Energy 2019, 61, 576.
- 72C.-B. Hong, X. Li, W.-B. Wei, X.-T. Wu, Q.-L. Zhu, Appl. Catal. B Environ. 2021, 294, 120230.
- 73N. Wang, S. Ning, X. Yu, D. Chen, Z. Li, J. Xu, H. Meng, D. Zhao, L. Li, Q. Liu, B. Lu, S. Chen, Appl. Catal. B Environ. 2022, 302, 120838.
- 74Z. Zhuang, Y. Wang, C.-Q. Xu, S. Liu, C. Chen, Q. Peng, Z. Zhuang, H. Xiao, Y. Pan, S. Lu, R. Yu, W.-C. Cheong, X. Cao, K. Wu, K. Sun, Y. Wang, D. Wang, J. Li, Y. Li, Nat. Commun. 2019, 10, 4875.
- 75J. Yang, Q. Shao, B. Huang, M. Sun, X. Huang, iScience 2019, 11, 492.
- 76T. Zhu, S. Liu, B. Huang, Q. Shao, M. Wang, F. Li, X. Tan, Y. Pi, S.-C. Weng, B. Huang, Z. Hu, J. Wu, Y. Qian, X. Huang, Energy Environ. Sci. 2021, 14, 3194.
- 77W. Jin, H. Wu, W. Cai, B. Jia, M. Batmunkh, Z. Wu, T. Ma, Chem. Eng. J. 2021, 426, 130762.
- 78Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao, X. Huang, Angew. Chem., Int. Ed. 2019, 58, 13983.
- 79C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal, C. Zhao, Adv. Mater. 2022, 34, 2110103.
- 80J. Yang, H. Guo, S. Chen, Y. Li, C. Cai, P. Gao, L. Wang, Y. Zhang, R. Sun, X. Niu, Z. Wang, J. Mater. Chem. A 2018, 6, 13859.
- 81J. Wang, Z. Wei, S. Mao, H. Li, Y. Wang, Energy Environ. Sci. 2018, 11, 800.
- 82H. Li, M. Zhang, L. Yi, Y. Liu, K. Chen, P. Shao, Z. Wen, Appl. Catal. B-Environ. 2021, 280, 119412.
- 83L. Deng, F. Hu, M. Ma, S.-C. Huang, Y. Xiong, H.-Y. Chen, L. Li, S. Peng, Angew. Chem., Int. Ed. 2021, 60, 22276.
- 84G. Meng, H. Tian, L. Peng, Z. Ma, Y. Chen, C. Chen, Z. Chang, X. Cui, J. Shi, Nano Energy 2021, 80, 105531.
- 85G. Ding, S. Chu, D. Lin, R. He, Y. Jiang, Y. Lu, Catal. Commun. 2022, 162, 106401.
- 86S. Yuan, Z. Pu, H. Zhou, J. Yu, I. S. Amiinu, J. Zhu, Q. Liang, J. Yang, D. He, Z. Hu, G. V. Tendeloo, S. Mu, Nano Energy 2019, 59, 472.
- 87Z. Pu, I. S. Amiinu, Z. Kou, W. Li, S. Mu, Angew. Chem. Int. Ed. 2017, 56, 11559.
- 88M. Cheng, H. Geng, Y. Yang, Y. Zhang, C. C. Li, Chem. Eur. J. 2019, 25, 8579.
- 89D. Yang, P. Li, X.-Y. Gao, J. Han, Z.-Y. Liu, Y.-P. Yang, J.-H. Yang, Chem. Eng. J. 2022, 432, 134422.