Semitransparent Printable Mesoscopic Perovskite Solar Cells for Tandem Solar Cells
Ting Ye
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorJan Christoph
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Department Organic and Perovskite Photovoltaics, Fraunhofer Institute for Solar Energy Systems ISE, 79110 Freiburg, Germany
Search for more papers by this authorJiale Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYing Yang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorWenhao Zhang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorHairen Tan
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorAnyi Mei
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYaoguang Rong
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYue Hu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Hongwei Han
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorTing Ye
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorJan Christoph
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Department Organic and Perovskite Photovoltaics, Fraunhofer Institute for Solar Energy Systems ISE, 79110 Freiburg, Germany
Search for more papers by this authorJiale Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYing Yang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorWenhao Zhang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorHairen Tan
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorAnyi Mei
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYaoguang Rong
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorYue Hu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Hongwei Han
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorAbstract
The boosting efficiency of perovskite solar cells (PSCs) has evoked the interest in applying them in tandem structures, especially perovskite/silicon tandem solar cells. However, the tandem solar cells still face concerns about stability, upscaling, and cost-effectiveness on the path to commercialization. Herein, an innovative tandem architecture based on the printable mesoscopic perovskite solar cells is proposed. By investigating the effects of indium tin oxide (ITO) particle size, annealing temperature, and dispersant on the performance of ITO mesoporous films, screen-printable mesoscopic ITO electrode with an electron mobility of 7.5 cm2 V−1 s−1 and an average visible transmittance of over 80% is successfully obtained. The screen-printed mesoporous titania, zirconia, and ITO are used as a scaffold and a semitransparent PSC with a champion power conversion efficiency of 9.38% is fabricated infiltrated with perovskites. Further, a perovskite/silicon tandem device which can remain stable for >720 h is demonstrated, highlighting the potential of screen-printed inorganic scaffold structure in tandem photovoltaic technique.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ente202200524-sup-0001-SuppData-S1.pdf1.2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. P. Shen, D. Walter, Y. L. Wu, K. C. Fong, D. A. Jacobs, T. Duong, J. Peng, K. Weber, T. P. White, K. R. Catchpole, Adv. Energy Mater. 2020, 10, 1902840; b) T. Nozawa, Y. Arakawa, Appl. Phys. Lett. 2011, 98, 171108; c) A. S. Brown, M. A. Green, Prog. Photovoltaics 2002, 10, 299; d) J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222; e) C. D. Bailie, M. D. McGehee, MRS Bull. 2015, 40, 681; f) J. Werner, C. H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. De Wolf, B. Niesen, C. Ballif, J. Phys. Chem. Lett. 2016, 7, 161; g) H. Li, W. Zhang, Chem. Rev. 2020, 120, 9835.
- 2a) G. Hodes, Science 2013, 342, 317; b) G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344; c) A. Abrusci, R. S. S. Kumar, M. Al-Hashimi, M. Heeney, A. Petrozza, H. J. Snaith, Adv. Funct. Mater. 2011, 21, 2571; d) M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643; e) G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Adv. Funct. Mater. 2014, 24, 151.
- 3 P. Loper, B. Niesen, S. J. Moon, S. M. de Nicolas, J. Holovsky, Z. Remes, M. Ledinsky, F. J. Haug, J. H. Yum, S. De Wolf, C. Ballif, IEEE J. Photovoltaics 2014, 4, 1545.
- 4a) B. Chen, S. W. Baek, Y. Hou, E. Aydin, M. De Bastiani, B. Scheffel, A. Proppe, Z. R. Huang, M. Y. Wei, Y. K. Wang, E. H. Jung, T. G. Allen, E. Van Kerschaver, F. P. G. de Arquer, M. I. Saidaminov, S. Hoogland, S. De Wolf, E. H. Sargent, Nat. Commun. 2020, 11, 1257; b) A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Marquez, A. B. M. Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Science 2020, 370, 1300.
- 5a) Z. H. Zhang, Z. C. Li, L. Y. Meng, S. Y. Lien, P. Gao, Adv. Funct. Mater. 2020, 30, 2001904; b) J. Werner, B. Niesen, C. Ballif, Adv. Mater. Interfaces 2018, 5, 1700731.
- 6a) M. I. Asghar, J. Zhang, H. Wang, P. D. Lund, Renewable Sustainable Energy Rev. 2017, 77, 131; b) J. Xiong, B. C. Yang, C. H. Cao, R. S. Wu, Y. L. Huang, J. Sun, J. Zhang, C. B. Liu, S. H. Tao, Y. L. Gao, J. L. Yang, Org. Electron. 2016, 30, 30; c) T. Leijtens, E. T. Hoke, G. Grancini, D. J. Slotcavage, G. E. Eperon, J. M. Ball, M. De Bastiani, A. R. Bowring, N. Martino, K. Wojciechowski, M. D. McGehee, H. J. Snaith, A. Petrozza, Adv. Energy Mater. 2015, 5, 1500962; d) P. Roy, N. K. Sinha, S. Tiwari, A. Khare, Sol. Energy 2020, 198, 665.
- 7a) Y. Hu, S. Si, A. Y. Mei, Y. G. Rong, H. W. Liu, X. Li, H. W. Han, Sol. RRL 2017, 1, 1770106;
10.1002/solr.201770106 Google Scholarb) G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, Nat. Commun. 2017, 8, 15684.
- 8 M. Xu, W. X. Ji, Y. S. Sheng, Y. W. Wu, H. Cheng, J. Meng, Z. B. Yan, J. F. Xu, A. Y. Mei, Y. Hu, Y. G. Rong, H. W. Han, Nano Energy 2020, 74, 104842
- 9 A. Y. Mei, Y. S. Sheng, Y. Ming, Y. Hu, Y. G. Rong, W. H. Zhang, S. L. Luo, G. R. Na, C. B. Tian, X. M. Hou, Y. L. Xiong, Z. H. Zhang, S. Liu, S. Uchida, T. W. Kim, Y. B. Yuan, L. J. Zhang, Y. H. Zhou, H. W. Han, Joule 2020, 4, 2646.
- 10 X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Grätzel, Energy Technol. 2015, 3, 551.
- 11a) J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 2012, 24, 5408; b) M. De Bastiani, A. S. Subbiah, E. Aydin, F. H. Isikgor, T. G. Allen, S. De Wolf, Mater. Horiz. 2020, 7, 2791.
- 12a) A. Schneider, A. Efrati, S. Alon, M. Sohmer, L. Etgar, Proc. Natl. Acad. Sci. U.S.A 2020, 117, 31010; b) C. M. Tsai, Y. P. Lin, M. K. Pola, S. Narra, E. Jokar, Y. W. Yang, E. W. G. Diau, ACS Energy Lett. 2018, 3, 2077.
- 13a) V. Vasu, A. Subrahmanyam, Appl. Phys. A 2005, 80, 823; b) H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, J. Appl. Phys. 1999, 86, 6451; c) M. S. Hwang, H. J. Lee, H. S. Jeong, Y. W. Seo, S. J. Kwon, Surf. Coat. Technol. 2003, 171, 29; d) M. J. Alam, D. C. Cameron, Thin Solid Films 2002, 420, 76.
- 14 K. Fan, M. Liu, T. Y. Peng, L. Ma, K. Dai, Renewable Energy 2010, 35, 555.
- 15a) H. N. Chen, S. H. Yang, J. Mater. Chem. A 2019, 7, 15476; b) F. N. Meng, A. M. Liu, L. G. Gao, J. M. Cao, Y. L. Yan, N. Wang, M. Q. Fan, G. Y. Wei, T. L. Ma, J. Mater. Chem. A 2019, 7, 8690.
- 16 M. J. Cass, F. L. Qiu, A. B. Walker, A. C. Fisher, L. M. Peter, J. Phys. Chem. B 2003, 107, 113.
- 17 A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 2004, 248, 1165.
- 18 R. M. Saraka, S. L. Morelly, M. H. Tang, N. J. Alvarez, ACS Appl. Energy Mater. 2020, 3, 11681.
- 19a) H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore, D. B. Chrisey, J Appl. Phys. 2000, 88, 6021; b) Y. Z. Zhang, L. H. Wu, E. Q. Xie, H. G. Duan, W. H. Han, J. G. Zhao, J. Power Sources 2009, 189, 1256.
- 20
B. Wu, K. W. Fu, N. Yantara, G. C. Xing, S. Y. Sun, T. C. Sum, N. Mathews, Adv. Mater. 2015, 5, 1500829.
10.1002/aenm.201500829 Google Scholar
- 21 Y. W. Li, L. Meng, Y. Yang, G. Y. Xu, Z. R. Hong, Q. Chen, J. B. You, G. Li, Y. Yang, Y. F. Li, Nat. Commun. 2016, 7, 10214.
- 22 Y. L. Li, S. Carretero-Palacios, K. Yoo, J. H. Kim, A. Jimenez-Solano, C. H. Lee, H. Miguez, M. J. Ko, Energy Environ. Sci. 2016, 9, 2061.
- 23 A. Y. Mei, X. Li, L. F. Liu, Z. L. Ku, T. F. Liu, Y. G. Rong, M. Xu, M. Hu, J. Z. Chen, Y. Yang, M. Gratzel, H. W. Han, Science 2014, 345, 295.