Oxygen-Rich Porous Activated Carbon from Eucalyptus Wood as an Efficient Supercapacitor Electrode
Atika
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Search for more papers by this authorCorresponding Author
Raj Kumar Dutta
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Search for more papers by this authorAtika
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Search for more papers by this authorCorresponding Author
Raj Kumar Dutta
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Search for more papers by this authorData available on request due to privacy/ethical restrictions.
Abstract
Herein, lignin-rich KOH-activated porous carbon from eucalyptus wood (named as PACE) is presented as an efficient electrode for supercapacitors (SCs). Compared with the most commonly used higher activation temperature, i.e., 800 °C with KOH (PACE-800), a more efficient SC is developed by activating carbon with KOH at lesser temperature, i.e., 600 °C (PACE-600). The high specific capacitance (i.e., 230 F g−1 at 1 A g−1 measured in a 2 m NaCl electrolyte) measured by galvanostatic charge–discharge (GCD) studies is not primarily due to larger surface area, but due to the inherent electron-rich oxygen-based functionalities that persist at the lower activation temperature, contributing to the hydrophilic nature to PACE-600. The mechanism of the capacitive charge storage is deduced from electrochemical impedance spectroscopy (EIS). The application of PACE-600 as a SC electrode is confirmed from insignificant loss in the specific capacitance after 10 000 charging–discharging cycles, recorded at 10 A g−1. Further, fabrication of higher-voltage (1.6 V) symmetric SC PACE-600//PACE-600 in aqueous neutral electrolyte (2 m NaCl) is presented, which illuminates a red LED (1.8 V) for 1 min after charging for 5 s. The corresponding energy density is calculated to be 41 W h kg−1, and at a power density of 2396 W kg−1.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data available on request due to privacy/ethical restrictions.
Supporting Information
Filename | Description |
---|---|
ente202100463-sup-0001-SuppData-S1.pdf605 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Cui, X. Meng, Nanoscale Adv. 2020, 2, 5516.
- 2F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 2017, 46, 6816.
- 3A. Mohanty, D. P. Jaihindh, Y. P. Fu, S. P. Senanayak, L. S. Mende, A. Ramadoss, J. Power Sources 2021, 488, 229444.
- 4Y. Lu, H. Mi, C. Ji, F. Guo, Z. Bai, Y. Liu, C. Yu, J. Qiu, ACS Sustainable Chem. Eng. 2020, 8, 4207.
- 5M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Chem. Soc. Rev. 2018, 47, 2680.
- 6Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang, F. Kang, Q. H. Yang, J. Luo, Adv. Funct. Mater. 2017, 27, 1604687.
- 7F. Liu, Y. Gao, C. Zhang, H. Huang, C. Yan, X. Chu, Z. Xu, Z. Wang, H. Zhang, X. Xiao, W. Yang, J. Colloid Interface Sci. 2019, 548, 322.
- 8L. Qin, Z. Hou, S. Lu, S. Liu, Z. Liu, E. Jiang, Int. J. Electrochem. Sci. 2019, 14, 8907.
- 9Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu, Mater. Chem. Phys. 2003, 80, 704.
- 10T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G. Q. Lu, J. Power Sources 2010, 195, 912.
- 11W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Carbon 2011, 49, 838.
- 12G. Ma, J. Li, K. Sun, H. Peng, E. Feng, Z. Lei, J. Solid State Electrochem. 2017, 21, 525.
- 13L. Zang, X. Qiao, Q. Liu, C. Yang, L. Hu, J. Yang, Z. Ma, Cellulose 2020, 27, 1033.
- 14K. Song, W. L. Song, L. Z. Fan, J. Mater. Chem. A 2015, 3, 16104.
- 15Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Green Chem. 2017, 19, 4132.
- 16M. Karnan, K. Subramani, P. K. Srividhya, M. Sathish, Electrochim. Acta 2017, 228, 586.
- 17R. Zou, H. Quan, W. Wang, W. Gao, Y. Dong, D. Chen, J. Environ. Chem. Eng. 2018, 6, 258.
- 18W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, J. Mater. Chem. A 2015, 3, 5656.
- 19Y. Wen, L. Chi, K. Wenelska, X. Wen, X. Chen, E. Mijowska, Sci. Rep. 2020, 10, 14631.
- 20C. Leng, K. Sun, J. Li, J. Jiang, ACS Sustainable Chem. Eng. 2017, 5, 10474.
- 21J. Li, G. Zan, Q. Wu, RSC Adv. 2016, 6, 57464.
- 22Y. Gong, D. Li, Q. Fu, Y. Zhang, C. Pan, ACS Appl. Energy Mater. 2020, 3, 1585.
- 23H. M. Lee, K. H. An, S. J. Park, B. J. Kim, Nanomaterials 2019, 9, 608.
- 24Z. Wang, Y. Wang, X. Hao, J. Liu, Y. Chen, P. Li, M. Dong, New J. Chem. 2020, 44, 19022.
- 25S. Hérou, M. Crespo Ribadeneyra, P. Schlee, H. Luo, L. C. Tanase, C. Roβberg, M. Titirici, J. Energy Chem. 2020, 53, 36.
- 26X. R. Li, Y. H. Jiang, P. Z. Wang, Y. Mo, W. De Lai, Z. J. Li, R. J. Yu, Y. T. Du, X. R. Zhang, Y. Chen, New Carbon Mater. 2020, 35, 232.
- 27J. Liang, T. Qu, X. Kun, Y. Zhang, S. Chen, Y. Cao, M. Xie, X. Guo, Appl. Surf. Sci. 2018, 436, 934.
- 28L. Reina, E. Botto, C. Mantero, P. Moyna, P. Men, Biomass Bioenergy 2016, 93, 116.
- 29J. Rodrigues, J. Graça, H. Pereira, J. Anal. Appl. Pyrolysis 2001, 58–59, 481.
- 30J. Rodrigues, O. Faix, H. Periera, Holzforschung 1998, 42, 56
- 31J. H. Park, H. H. Rana, J. Y. Lee, H. S. Park, J. Mater. Chem. A 2019, 7, 16962.
- 32J. Deng, T. Xiong, H. Wang, A. Zheng, Y. Wang, ACS Sustainable Chem. Eng. 2016, 4, 3750.
- 33P. Schlee, O. Hosseinaei, D. Baker, A. Landmér, P. Tomani, M. J. Mostazo-López, D. Cazorla-Amorós, S. Herou, M. M. Titirici, Carbon 2019, 145, 470.
- 34V. R. de Castro, M. P. de Castro Freitas, A. J. V. Zanuncio, J. C. Zanuncio, P. G. Surdi, A. de Cássia Oliveira Carneiro, B. R. Vital, Sci. Rep. 2019, 9, 11068.
- 35D. Jain, J. Kanungo, S. K. Tripathi, J. Alloys Compd. 2020, 832, 154956.
- 36N. Yadav, Ritu, Promila, S. A. Hashmi, Sustainable Energy Fuels 2020, 4, 1730.
- 37S. J. Rajasekaran, V. Raghavan, Diamond Relat. Mater. 2020, 109, 108038.
- 38Y. Gao, Q. Yue, B. Gao, A. Li, Sci. Total Environ. 2020, 746, 141094.
- 39A. K. Mohamedkhair, M. A. Aziz, S. S. Shah, M. N. Shaikh, A. K. Jamil, M. A. A. Qasem, I. A. Buliyaminu, Z. H. Yamani, Arabian J. Chem. 2020, 13, 6161.
- 40G. Huang, Q. Geng, B. Xing, Y. Liu, Y. Li, Q. Liu, J. Jia, L. Chen, C. Zhang, J. Power Sources 2020, 449, 227506.
- 41S. Li, K. Han, J. Li, M. Li, C. Lu, Microporous Mesoporous Mater. 2017, 243, 291.
- 42Y. Wang, J. Cao, Y. Zhou, J. Ouyang, D. Jia, L. Guo, J. Electrochem. Soc. 2012, 159, A579.
- 43Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, J. Phys. Chem. C 2009, 113, 14020.
- 44B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Nanoscale Adv. 2019, 1, 3807.
- 45L. Suárez, V. Barranco, T. A. Centeno, J. Colloid Interface Sci. 2021, 588, 705.
- 46W. J. Liu, H. Jiang, H. Q. Yu, Chem. Rev. 2015, 115, 12251.
- 47H. Arslanoğlu, J. Hazard. Mater. 2019, 374, 238.
- 48A. S. Mestre, C. Freire, J. Pires, A. P. Carvalho, M. L. Pinto, J. Mater. Chem. A 2014, 2, 15337.
- 49W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 2014, 7, 379.
- 50Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, J. Power Sources 2018, 376, 82.
- 51Y. Zhang, X. Liu, S. Wang, S. Dou, L. Li, J. Mater. Chem. A 2016, 4, 10869.
- 52M. Liu, L. Liu, Y. Zhang, Y. Yu, A. Chen, J. Mater. Sci. Mater. Electron. 2019, 30, 3214.
- 53B. Pandit, D. P. Dubal, P. Gómez-Romero, B. B. Kale, B. R. Sankapal, Sci. Rep. 2017, 7, 43430.
- 54Y. Liu, B. Huang, X. Lin, Z. Xie, J. Mater. Chem. A 2017, 5, 13009.
- 55H. Shen, X. Xia, Y. Ouyang, X. Jiao, S. Mutahir, D. Mandler, Q. Hao, ChemElectroChem 2019, 6, 3599.
- 56P. Bai, S. Wei, X. Lou, L. Xu, RSC Adv. 2019, 9, 31447.
- 57B. Yu, X. Wang, X. Qian, W. Xing, H. Yang, L. Ma, Y. Lin, S. Jiang, L. Song, Y. Hu, S. Lo, RSC Adv. 2014, 4, 31782.
- 58B. Ru, S. Wang, G. Dai, L. Zhang, Energy Fuels 2015, 29, 5865.
- 59L. Shang, J. Ahrenfeldt, J. K. Holm, A. R. Sanadi, S. Barsberg, T. Thomsen, W. Stelte, U. B. Henriksen, Biomass Bioenergy 2012, 40, 63.
- 60M. Sevilla, R. Mokaya, Energy Environ. Sci. 2014, 7, 1250.
- 61G. A. Yakaboylu, T. Yumak, C. Jiang, J. W. Zondlo, J. Wang, E. M. Sabolsky, Energy Fuels 2019, 33, 9309.
- 62D. Qu, G. Wang, J. Kafle, J. Harris, L. Crain, Z. Jin, D. Zheng, Small Methods 2018, 2, 1700342.
- 63S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. Kun Liu, S. Xue Dou, Energy Environ. Sci. 2011, 4, 1855.
- 64J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T. A. Strobel, L. Tao, F. Gao, Nat. Commun. 2015, 6, 8503.
- 65W. Li, J. Shao, Q. Liu, X. Liu, X. Zhou, J. Hu, Electrochim. Acta 2015, 157, 108.
- 66J. Candler, T. Elmore, B. K. Gupta, L. Dong, S. Palchoudhury, R. K. Gupta, New J. Chem. 2015, 39, 6108.
- 67J. Lv, Y. Zhang, Z. Lv, X. Huang, Z. Wang, X. Zhu, B. Wei, J. Mater. Sci. Mater. Electron. 2017, 28, 17020.
- 68S. Huang, Y. Ding, Y. Li, X. Han, B. Xing, S. Wang, Energy Fuels 2021, 35, 1557.
- 69L. Zhang, H. Gu, H. Sun, F. Cao, Y. Chen, G. Z. Chen, Carbon 2018, 132, 573.
- 70W. J. Liu, K. Tian, L. L. Ling, H. Q. Yu, H. Jiang, Environ. Sci. Technol. 2016, 50, 12421.
- 71Y. Cui, H. Wang, X. Xu, Y. Lv, J. Shi, W. Liu, S. Chen, X. Wang, Sustainable Energy Fuels 2018, 2, 381.
- 72Q. Fan, C. Ma, L. Wu, C. Wei, H. Wang, Y. Song, J. Shi, RSC Adv. 2019, 9, 6419.
- 73Z. Chen, X. Wang, B. Xue, W. Li, Z. Ding, X. Yang, J. Qiu, Z. Wang, Carbon 2020, 161, 432.
- 74M. Demir, T. D. Tessema, A. A. Farghaly, E. Nyankson, S. K. Saraswat, B. Aksoy, T. Islamoglu, M. M. Collinson, H. M. El-Kaderi, R. B. Gupta, Int. J. Energy Res. 2018, 42, 2686.
- 75E. Taer, N. Yanti, W. S. Mustika, A. Apriwandi, R. Taslim, A. Agustino, Int. J. Energy Res. 2020, 44, 10192.
- 76B. Ashourirad, M. Demir, R. A. Smith, R. B. Gupta, H. M. El-Kaderi, RSC Adv. 2018, 8, 12300.
- 77O. C. Altinci, M. Demir, Energy Fuels 2020, 34, 7658.
- 78Z. Abedi, D. Leistenschneider, W. Chen, D. G. Ivey, Energy Technol. 2020, 8, 2000588.
- 79N. V. Challagulla, M. Vijayakumar, D. Sri Rohita, G. Elsa, A. Bharathi Sankar, T. Narasinga Rao, M. Karthik, Energy Technol. 2020, 8, 2000417.
- 80Y. Liang, Y. Lu, J. Zhang, H. Chi, Y. Dong, G. Xiao, Energy Technol. 2021, https://doi.org/10.1002/ente.202100305.