A Comprehensive Perspective on the Fabrication of CuGaSe2/Si Tandem Solar Cells
Corresponding Author
Sateesh Prathapani
Micro-Nano System Center, School of Information Science and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Yiqiang Zhan
Micro-Nano System Center, School of Information Science and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Sateesh Prathapani
Micro-Nano System Center, School of Information Science and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Yiqiang Zhan
Micro-Nano System Center, School of Information Science and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorAbstract
This review points out the current need for further research on tandem solar cells as the commercial single-junction solar cell technologies report close to their maximum performance limit. First, the conceptual insight and the desired interconnection schemes for tandem solar cells are briefly presented. Then, a comprehensive discussion on the structural, optical, and electronic properties of CuGaSe2, evaluating its use as a top cell absorber material, is presented. Furthermore, the current status and the critical analysis of CuGaSe2 solar cells, which finds that the adapted conventional device architecture possesses severe limitations, are presented. Based on the drawbacks of the existing materials in use, new materials to fabricate CuGaSe2 solar cells are proposed. Also, tandem configurations with newly proposed CuGaSe2 solar cell architecture by choosing Si photovoltaics as bottom cells are devised. In the end, further challenges in the devised tandem configurations with a focus on their band alignments are elucidated.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. E. Fritts, J. Franklin Inst. 1885, 119, 221.
10.1016/0016-0032(85)90426-0 Google Scholar
- 2G. Li, W. H. Chang, Y. Yang, Nat. Rev. Mater. 2017, 2, 17043.
- 3Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. Van Hest, K. Zhu, Nat. Rev. Mater. 2018, 3, 18017.
- 4J. S. Park, S. Kim, Z. Xie, A. Walsh, Nat. Rev. Mater. 2018, 3, 194.
- 5P. K. Nayak, S. Mahesh, H. J. Snaith, D. Cahen, Nat. Rev. Mater. 2019, 4, 269.
- 6M. Hermle, F. Feldmann, M. Bivour, J. C. Goldschmidt, S. W. Glunz, Appl. Phys. Rev. 2020, 7, 021305.
- 7M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C. D. Wessendorf, T. Magorian Friedlmeier, Appl. Phys. Rev. 2018, 5, 041602.
- 8Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, J. F. Guillemoles, Appl. Phys. Rev. 2015, 2, 021302.
- 9P. Wang, Y. Zhao, T. Wang, Appl. Phys. Rev. 2020, 7, 031303.
- 10J. C. Goldschmidt, S. Fischer, Adv. Opt. Mater. 2015, 3, 510.
- 11S. A. Vanalakar, P. S. Patil, J. H. Kim, Sol. Energy Mater. Sol. Cells 2018, 182, 204.
- 12J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, S. Kumar, Renew. Sustain. Energy Rev. 2011, 15, 1228.
- 13M. K. Siddiki, J. Li, D. Galipeau, Q. Qiao, Energy Environ. Sci. 2010, 3, 867.
- 14P. Mandal, S. Sharma, Renew. Sustain. Energy Rev. 2016, 65, 537.
- 15Q. Huaulmé, V. M. Mwalukuku, D. Joly, J. Liotier, Y. Kervella, P. Maldivi, S. Narbey, F. Oswald, A. J. Riquelme, J. A. Anta, R. Demadrille, Nat. Energy 2020, 5, 468.
- 16G. Richhariya, A. Kumar, P. Tekasakul, B. Gupta, Renew. Sustain. Energy Rev. 2017, 69, 705.
- 17R. Manivannan, S. N. Victoria, Sol. Energy 2018, 173, 1144.
- 18D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
- 19L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Adv. Phys. X 2019, 4, 1548305.
- 20L. Hunt, in 12th IEEE PV Spec. Conf., IEEE, Piscataway, NJ 1976, pp. 347–352.
- 21K. Zweibel, Prog. Photovolt: Res. Appl. 1995, 3, 279, https://doi.org/10.1002/pip.4670030503.
- 22N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, Jpn. J. Appl. Phys. 1980, 19, 161.
- 23C. Breyer, A. Gerlach, Prog. Photovoltaics Res. Appl. 2013, 21, 121.
- 24 International Renewable Energy Agency, in Renewable Energy Technologies: Cost Aanalysis Series, International Renewable Energy Agency (IRENA), Germany 2012, www.irena.org/publications.
- 25P. Rappaport, Rev. Phys. Appliquée 1966, 1, 154.
- 26K. A. W. Horowitz, T. Remo, B. Smith, A. Ptak, in Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cells, National Renewable Energy Laboratory, Golden, CO 2018, NREL/TP-6A20-72103, www.nrel.gov/docs/fy19osti/72103.pdf.
10.2172/1484349 Google Scholar
- 27N. A. Pakhanov, V. M. Andreev, M. Z. Shvarts, O. P. Pchelyakov, Optoelectron. Instrum. Data Process. 2018, 54, 187.
- 28J. J. Schermer, P. Mulder, G. J. Bauhuis, P. K. Larsen, G. Oomen, E. Bongers, Prog. Photovolt. Res. Appl. 2005, 13, 587.
- 29H. Yoon, J. E. Granata, P. Hebert, R. R. King, C. M. Fetzer, P. C. Colter, K. M. Edmondson, D. Law, G. S. Kinsey, D. D. Krut, J. H. Ermer, M. S. Gillanders, N. H. Karam, Prog. Photovolt. Res. Appl. 2005, 13, 133.
- 30F. W. Clarke, H. S. Washington, The Composition of Earth's Crust, United States Geological Survey, USGS Publications Warehouse, Washington 1924, https://doi.org/10.3133/pp127, http://pubs.er.usgs.gov/publication/pp127.
- 31M. A. Green, Nat. Energy 2016, 1.
- 32 PV insights, http://pvinsights.com/index.php, 2019.
- 33M. A. Woodhouse, B. Smith, A. Ramdas, R. Margolis, in Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Roadmap, National Renewable Energy Laboratory, Golden, CO 2019, www.nrel.gov/docs/fy19osti/72134.pdf.
10.2172/1495719 Google Scholar
- 34D. C. Jordan, S. R. Kurtz, Prog. Photovoltaics Res. Appl. 2013, 21, 12.
- 35K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Sol. Energy Mater. Sol. Cells 2017, 173, 37.
- 36R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser, P. Beutel, N. Razek, M. Wimplinger, B. Bläsi, D. Lackner, M. Hermle, G. Siefer, S. W. Glunz, A. W. Bett, F. Dimroth, Nat. Energy 2018, 3, 326.
- 37H. Sai, T. Matsui, K. Matsubara, Appl. Phys. Lett. 2016, 109, 183506, https://doi.org/10.1063/1.4966996.
- 38J. S. Ward, T. Remo, K. Horowitz, M. Woodhouse, B. Sopori, K. VanSant, P. Basore, Prog. Photovoltaics Res. Appl. 2016, 24, 1284.
- 39K. Lee, J. Lee, B. A. Mazor, S. R. Forrest, Light Sci. Appl. 2015, 4, e288.
- 40A. J. Bett, P. S. C. Schulze, K. M. Winkler, Ö. S. Kabakli, I. Ketterer, L. E. Mundt, S. K. Reichmuth, G. Siefer, L. Cojocaru, L. Tutsch, M. Bivour, M. Hermle, S. W. Glunz, J. C. Goldschmidt, Prog. Photovoltaics Res. Appl. 2020, 28, 99.
- 41T. Duong, H. Pham, T. C. Kho, P. Phang, K. C. Fong, D. Yan, Y. Yin, J. Peng, M. A. Mahmud, S. Gharibzadeh, B. A. Nejand, I. M. Hossain, M. R. Khan, N. Mozaffari, Y. Wu, H. Shen, J. Zheng, H. Mai, W. Liang, C. Samundsett, M. Stocks, K. McIntosh, G. G. Andersson, U. Lemmer, B. S. Richards, U. W. Paetzold, A. Ho-Ballie, Y. Liu, D. Macdonald, A. Blakers, et al., Adv. Energy Mater. 2020, 10, 1903553.
- 42A. S. Subbiah, F. H. Isikgor, C. T. Howells, M. De Bastiani, J. Liu, E. Aydin, F. Furlan, T. G. Allen, F. Xu, S. Zhumagali, S. Hoogland, E. H. Sargent, I. McCulloch, S. De Wolf, ACS Energy Lett. 2020, 5, 3034.
- 43Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, X. Xu, Q. Chang, S. Yang, F. Meng, Z. Liu, N. Yuan, J. Ding, S. (Frank) Liu, D. Yang, Adv. Funct. Mater. 2020, 30, 1908298.
- 44S. Prathapani, P. Bhargava, S. Mallick, Appl. Phys. Lett. 2018, 112, 092104.
- 45S. Prathapani, V. More, S. Bohm, P. Bhargava, A. Yella, S. Mallick, Appl. Mater. Today 2017, 7, 112.
- 46S. Prathapani, D. Choudhary, S. Mallick, P. Bhargava, A. Yella, CrystEngComm 2017, 19, 3834.
- 47H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, M. Grätzel, Science 2020, 370, article no. eabb8985, https://doi.org/10.1126/science.abb8985.
- 48Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su, K. Zheng, T. Pullerits, Z. Liang, Adv. Energy Mater. 2017, 7, 1700162.
- 49C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019.
- 50S. H. Turren-Cruz, A. Hagfeldt, M. Saliba, Science 2018, 362, 449.
- 51T. K. Todorov, D. M. Bishop, Y. S. Lee, Sol. Energy Mater. Sol. Cells 2018, 180, 350.
- 52Z. Zhang, Z. Li, L. Meng, S. Y. Lien, P. Gao, Adv. Funct. Mater. 2020, 30, 2001904.
- 53Q. Xu, Y. Zhao, X. Zhang, Sol. RRL 2020, 4, 1900206.
- 54S. P. Bremner, M. Y. Levy, C. B. Honsberg, Prog. Photovoltaics Res. Appl. 2008, 16, 225.
- 55D. T. Grant, K. R. Catchpole, K. J. Weber, T. P. White, Opt. Express 2016, 24, A1454.
- 56T. Todorov, O. Gunawan, S. Guha, Mol. Syst. Des. Eng. 2016, 1, 370.
- 57A. Luque, S. Hegedus, in Handbook of Photovoltaic Science and Engineering, Wiley, Hoboken, NJ 2011.
10.1002/9780470974704.ch4 Google Scholar
- 58S. Ishizuka, Phys. Status Solidi A 2019, 216, 1800873, https://doi.org/10.1002/pssa.201800873.
10.1002/pssa.201800873 Google Scholar
- 59D. O. Scanlon, A. Walsh, Appl. Phys. Lett. 2012, 100, 251911.
- 60T. Yokoyama, F. Oba, A. Seko, H. Hayashi, Y. Nose, I. Tanaka, Appl. Phys. Express 2013, 6, 061201.
- 61P. St-Jean, G. A. Seryogin, S. Francoeur, Appl. Phys. Lett. 2010, 96, 231913.
- 62P. C. Quayle, K. He, J. Shan, K. Kash, MRS Commun. 2013, 3, 135.
- 63T. D. Veal, N. Feldberg, N. F. Quackenbush, W. M. Linhart, D. O. Scanlon, L. F. J. Piper, S. M. Durbin, Adv. Energy Mater. 2015, 5, 1501462.
- 64M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. W. Garland, S. Sivananthan, Appl. Phys. Lett. 2010, 96, 153502.
- 65F. Larsson, N. S. Nilsson, J. Keller, C. Frisk, V. Kosyak, M. Edoff, T. Törndahl, Prog. Photovoltaics Res. Appl. 2017, 25, 755.
- 66S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, S. Niki, Appl. Phys. Lett. 2013, 103, 269903.
- 67A. R. Jeong, S. Bin Choi, W. M. Kim, J. K. Park, J. Choi, I. Kim, J. H. Jeong, Sci. Rep. 2017, 7.
- 68A. A. Lavrentiev, B. V. Gabrel'yan, I. Y. Nikiforov, J. Struct. Chem. 2000, 41, 418.
- 69J. C. Park, M. Al-Jassim, T. W. Kim, Mater. Express 2017, 7, 35.
- 70F. Pattini, M. Bronzoni, F. Mezzadri, F. Bissoli, E. Gilioli, S. Rampino, J. Phys. D. Appl. Phys. 2013, 46, 245101.
- 71M. Bronzoni, M. Stefancich, S. Rampino, Thin Solid Films 2012, 520, 7054.
- 72S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, Sol. Energy Mater. Sol. Cells 2015, 133, 82.
- 73S. Ullah, M. Mollar, B. Marí, J. Solid State Electrochem. 2016, 20, 2251.
- 74W. K. Kim, E. A. Payzant, S. Kim, S. A. Speakman, O. D. Crisalle, T. J. Anderson, J. Cryst. Growth 2008, 310, 2987.
- 75A. Bauknecht, S. Siebentritt, J. Albert, M. C. Lux-Steiner, J. Appl. Phys. 2001, 89, 4391.
- 76I. Balberg, D. Albin, R. Noufi, Appl. Phys. Lett. 1991, 58, 140.
- 77A. Meeder, D. F. Marrón, A. Rumberg, M. C. Lux-Steiner, V. Chu, J. P. Conde, J. Appl. Phys. 2002, 92, 3016.
- 78T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, J. Appl. Phys. 1998, 84, 5202.
- 79A. Meeder, D. Fuertes Marrón, V. Chu, J. P. Conde, A. Jäger-Waldau, A. Rumberg, M. C. Lux-Steiner, Thin Solid Films 2002, 403–404, 495.
- 80J. Pohl, K. Albe, Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 87, 245203.
10.1103/PhysRevB.87.245203 Google Scholar
- 81Y. Hinuma, F. Oba, Y. Kumagai, I. Tanaka, Phys. Rev. B - Condens. Matter Mater. Phys. 2012, 86, 1.
10.1103/PhysRevB.86.245433 Google Scholar
- 82Y. Zhang, S. Lin, Z. Hu, S. Cheng, Z. He, Z. Zhou, S. Sun, W. Liu, Y. Sun, Sol. Energy Mater. Sol. Cells 2020, 209.
- 83J. F. Guillemoles, Thin Solid Films 2000, 361, 338.
- 84A. Zunger, S. B. Zhang, S. H. Wei, in Conf. Rec. IEEE Photovolt. Spec. Conf., IEEE, Piscataway, NJ 1997, pp. 313–318.
- 85C. Persson, Y. J. Zhao, S. Lany, A. Zunger, Phys. Rev. B - Condens. Matter Mater. Phys. 2005, 72, https://doi.org/10.1103/PhysRevB.72.035211.
10.1103/PhysRevB.72.035211 Google Scholar
- 86J. Bekaert, R. Saniz, B. Partoens, D. Lamoen, Phys. Chem. Chem. Phys. 2014, 16, 22299.
- 87J. E. Jaffe, A. Zunger, Phys. Rev. B 1983, 28, 5822.
- 88C. Persson, Appl. Phys. Lett. 2008, 93, 91.
- 89S. Siebentritt, A. Gerhard, S. Brehme, M. C. Lux-Steiner, Mater. Res. Soc. Symp. - Proc. 2001, 668, 1.
10.1557/PROC-668-H4.4 Google Scholar
- 90R. Menner, S. Zweigart, R. Klenk, H. W. Schock, Jpn. J. Appl. Phys. 1993, 32, 45.
- 91S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, S. Niki, Prog. Photovoltaics Res. Appl. 2014, 22, 821.
- 92S. Ishizuka, A. Yamada, P. J. Fons, Y. Kamikawa-Shimizu, H. Komaki, H. Shibata, S. Niki, Appl. Phys. Lett. 2014, 104, https://doi.org/10.1063/1.4861858.
- 93D. L. Young, J. Keane, A. Duda, J. A. M. AbuShama, C. L. Perkins, M. Romero, R. Noufi, Prog. Photovoltaics Res. Appl. 2003, 11, 535.
- 94J. H. Choi, K. Kim, S. K. Ahn, A. Cho, J. S. Cho, J. H. Yun, J. Yoo, S. H. Kong, J. Korean Phys. Soc. 2016, 69, 197.
- 95G. Teeter, S. P. Harvey, C. L. Perkins, K. Ramanathan, I. L. Repins, J. Vac. Sci. Technol. A 2019, 37, 031202.
- 96R. Kamada, T. Yagioka, S. Adachi, A. Handa, K. F. Tai, T. Kato, H. Sugimoto, Conf. Rec. IEEE Photovolt. Spec. Conf. IEEE, Piscataway, NJ 2016, p. 1287.
- 97S. Ishizuka, P. J. Fons, A. Yamada, Y. Kamikawa-Shimizu, H. Shibata, Appl. Phys. Lett. 2016, 108, https://doi.org/10.1063/1.4951670.
- 98M. Saad, A. Kassis, Sol. Energy Mater. Sol. Cells 2003, 77, 415.
- 99M. Gloeckler, J. R. Sites, Thin Solid Films 2005, 480–481, 241.
- 100S. Sharbati, J. R. Sites, IEEE J. Photovoltaics 2014, 4, 697.
- 101F. C. Marques, J. J. Jasieniak, Appl. Surf. Sci. 2017, 422, 504.
- 102W. Hsu, C. M. Sutter-Fella, M. Hettick, L. Cheng, S. Chan, Y. Chen, Y. Zeng, M. Zheng, H. P. Wang, C. C. Chiang, A. Javey, Sci. Rep. 2015, 5, 1.
- 103C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Phys. Rev. Lett. 2006, 97, 1.
- 104C. Ding, Y. Zhang, F. Liu, Y. Kitabatake, S. Hayase, T. Toyoda, K. Yoshino, T. Minemoto, K. Katayama, Q. Shen, Nano Energy 2018, 53, 17.
- 105O. Leenaerts, B. Partoens, F. M. Peeters, A. Volodin, C. Van Haesendonck, J. Phys. Condens. Matter 2017, 29, 035003.
- 106L. Yin, K. Zhang, H. Luo, G. Cheng, X. Ma, Z. Xiong, X. Xiao, Nanoscale 2014, 6, 10879.
- 107S. Ishizuka, N. Taguchi, J. Nishinaga, Y. Kamikawa, S. Tanaka, H. Shibata, J. Phys. Chem. C 2018, 122, 3809.
- 108V. Nadenau, U. Rau, A. Jasenek, H. W. Schock, J. Appl. Phys. 2000, 87, 584.
- 109A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A. N. Tiwari, Nat. Mater. 2013, 12, 1107.
- 110P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi - RRL. 2016, 10, 583.
- 111P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, Phys. Status Solidi - RRL. 2015, 9, 28.
- 112C. P. Muzzillo, T. J. Anderson, Sol. Energy Mater. Sol. Cells 2018, 179, 362.
- 113F. Werner, B. Veith-Wolf, M. Melchiorre, F. Babbe, J. Schmidt, S. Siebentritt, Sci. Rep. 2020, 10, 7530.
- 114F. Werner, B. Veith-Wolf, C. Spindler, M. R. Barget, F. Babbe, J. Guillot, J. Schmidt, S. Siebentritt, Phys. Rev. Appl. 2020, 13, 1.
- 115S. A. Jensen, S. Glynn, A. Kanevce, P. Dippo, J. V. Li, D. H. Levi, D. Kuciauskas, J. Appl. Phys. 2016, 120, 063106, https://doi.org/10.1063/1.4960344.
- 116D. Braunger, D. Hariskos, G. Bilger, U. Rau, H. W. Schock, Thin Solid Films 2000, 361–362, 161.
- 117A. Laemmle, R. Wuerz, T. Schwarz, O. Cojocaru-Mirédin, P. P. Choi, M. Powalla, J. Appl. Phys. 2014, 115, 154501.
- 118H. Lee, Y. Jang, S. W. Nam, C. Jung, P. P. Choi, J. Gwak, J. H. Yun, K. Kim, B. Shin, ACS Appl. Mater. Interfaces 2019, 11, 35653.
- 119Y. Zhao, S. Yuan, D. Kou, Z. Zhou, X. Wang, H. Xiao, Y. Deng, C. Cui, Q. Chang, S. Wu, ACS Appl. Mater. Interfaces 2020, 12, 12717.
- 120S. T. Kim, L. Larina, J. H. Yun, B. Shin, B. T. Ahn, Sustain. Energy Fuels 2019, 3, 709.
- 121C. Luderer, C. Reichel, F. Feldmann, M. Bivour, M. Hermle, Appl. Phys. Lett. 2019, 115, 182105.
- 122R. Peibst, M. Rienacker, B. Min, C. Klamt, R. Niepelt, T. Wietler, T. Dullweber, E. Sauter, J. Hibner, M. Oestreich, R. Brendel, in IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 - A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC, IEEE, Piscataway, NJ 2018, pp. 2635–2637.
- 123R. Peibst, M. Rienacker, B. Min, C. Klamt, R. Niepelt, T. F. Wietler, T. Dullweber, E. Sauter, J. Hubner, M. Oestreich, R. Brendel, IEEE J. Photovoltaics 2019, 9, 49.
- 124C. Luderer, C. Reichel, F. Feldmann, M. Bivour, M. Hermle, Appl. Phys. Lett. 2019, 115, 182105.
- 125J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee, T. Buonassisi, Appl. Phys. Lett. 2015, 106, 121105.
- 126P. Bellanger, A. Minj, A. Fave, Z. Djebbour, S. Roques, A. Slaoui, IEEE J. Photovoltaics 2018, 8, 1436.
- 127Y. Hu, L. Song, Y. Chen, W. Huang, Sol. RRL 2019, 3, 1.
- 128W. Yoon, D. Scheiman, Y.-W. Ok, Z. Song, C. Chen, G. Jernigan, A. Rohatgi, Y. Yan, P. Jenkins, Sol. Energy Mater. Sol. Cells 2020, 210, 110482.
- 129H. Simchi, B. E. McCandless, T. Meng, W. N. Shafarman, J. Appl. Phys. 2014, 115, article no. 033514, https://doi.org/10.1063/1.4862404.
- 130Y. Liu, S. Lin, W. Liu, S. Shi, Z. He, H. Wang, Y. Zhang, Z. Zhou, F. Liu, S. Xu, Y. Sun, Phys. Status Solidi Appl. Mater. Sci. 2019, 216, 1.
- 131M. Saifullah, S. Rasool, S. Ahn, K. Kim, J. S. Cho, J. Yoo, W. S. Shin, J. H. Yun, J. H. Park, ACS Appl. Mater. Interfaces 2019, 11, 655.
- 132K. Deevi, V. S. R. Immareddy, J. Mater. Sci. Mater. Electron. 2019, 30, 6242.
- 133K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, M. Hirano, J. Appl. Phys. 2001, 89, 1790.
- 134N. Zhang, J. Sun, H. Gong, Coatings 2019, 9, 1.
- 135M. S. Jamal, S. A. Shahahmadi, P. Chelvanathan, H. F. Alharbi, M. R. Karim, M. Ahmad Dar, M. Luqman, N. H. Alharthi, Y. S. Al-Harthi, M. Aminuzzaman, N. Asim, K. Sopian, S. K. Tiong, N. Amin, M. Akhtaruzzaman, Results Phys. 2019, 14, 102360.
- 136P. Wang, Y. Wu, B. Cai, Q. Ma, X. Zheng, W. H. Zhang, Adv. Funct. Mater. 2019, 29, 1.
- 137H. Hejin Park, R. Heasley, R. G. Gordon, Appl. Phys. Lett. 2013, 102, 1.
- 138C. Ding, Y. Zhang, F. Liu, Y. Kitabatake, S. Hayase, T. Toyoda, R. Wang, K. Yoshino, T. Minemoto, Q. Shen, Nanoscale Horizons 2018, 3, 417.
- 139R. Garrison, R. Kleiman, Opt. Express 2019, 27, A543.
- 140N. Romeo, G. Sberveglieri, L. Tarricone, C. Paorici, Appl. Phys. Lett. 1977, 30, 108.
- 141M. Saad, H. Riazi, E. Bucher, M. C. Lux-Steiner, Appl. Phys. A Mater. Sci. Process. 1996, 62, 181.
- 142M. Saad, H. Riazi-Nejad, E. Bucher, M. C. Lux-Steiner, Conf. Rec. IEEE Photovolt. Spec. Conf. 1994, 1, 214.
- 143T. Minami, T. Miyata, T. Yamamoto, Surf. Coatings Technol. 1998, 108–109, 583.
- 144S. Cai, Y. Li, X. Chen, Y. Ma, X. Liu, Y. He, J. Mater. Sci. Mater. Electron. 2016, 27, 6166.
- 145L. Yin, C. Yang, K. Zhang, H. Luo, X. Zhang, Z. Liu, G. Cheng, Z. Xiong, X. Xiao, 2014 IEEE 40th Photovolt. Spec. Conf. PVSC, IEEE, Piscataway, NJ 2014, 1740.
- 146S. Chen, X. G. Gong, S. H. Wei, Phys. Rev. B - Condens. Matter Mater. Phys. 2007, 75, 1.
- 147D. Huang, Z. Ju, H. Ning, C. Li, C. Yao, J. Guo, Mater. Chem. Phys. 2014, 148, 882.
- 148S. Schuler, S. Siebentritt, S. Nishiwaki, N. Rega, J. Beckmann, S. Brehme, M. C. Lux-Steiner, Phys. Rev. B - Condens. Matter Mater. Phys. 2004, 69, 1.
10.1103/PhysRevB.69.045210 Google Scholar
- 149A. Meeder, D. Fuertes Marrón, M. C. Lux-Steiner, M. Kunst, Mater. Res. Soc. Symp. - Proc. 2003, 763, 41.