In Situ Growth of Co4N Nanoparticles–Embedded Nitrogen-Doped Carbon Nanotubes on Metal–Organic Framework–Derived Carbon Composite as Highly Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions
Issa Kone
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorZubair Ahmad
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorAo Xie
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Yang Tang
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorYanzhi Sun
National Fundamental Research Laboratory of New Hazardous Chemicals, Institute of Electrochemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorYongmei Chen
National Fundamental Research Laboratory of New Hazardous Chemicals, Institute of Electrochemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXiaojin Yang
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Pingyu Wan
National Fundamental Research Laboratory of New Hazardous Chemicals, Institute of Electrochemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorIssa Kone
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorZubair Ahmad
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorAo Xie
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Yang Tang
Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Chaoyang, Beijing, 100029 P. R. China
Search for more papers by this authorYanzhi Sun
National Fundamental Research Laboratory of New Hazardous Chemicals, Institute of Electrochemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorYongmei Chen
National Fundamental Research Laboratory of New Hazardous Chemicals, Institute of Electrochemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorXiaojin Yang
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorCorresponding Author
Pingyu Wan
National Fundamental Research Laboratory of New Hazardous Chemicals, Institute of Electrochemical Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorAbstract
Highly efficient and low-cost bifunctional electrocatalysts for oxygen reduction and evolution reactions (ORR/OER) are central to new generation rechargeable metal–air batteries. Herein, hierarchical microspheres assembled by in situ generated Co4N nanoparticles (Co4N Nps)-embedded nitrogen-doped carbon nanotubes (Co4N@NCNTs) are constructed by a facile urea acid (UA)-assisted pyrolysis of zeolitic imidazole framework (ZIF)-67. In this strategy, the UA sharply decomposes at 440 °C to carbonaceous gases, which facilitate the nucleation of Co4N Nps for the catalytic growth of the NCNT microspheres structure from the intermediate ZIF-67 polyhedrons. The as-prepared Co4N@NCNTs exhibit high N content, abundant Co4N active species, high electron conductivity, and large specific area on a hierarchical micro-mesoporous structure. Therefore, the Co4N@NCNTs not only exceed Pt/C in terms of ORR half wave potential (0.85 vs 0.83 V) and limiting current density (5.50 vs 5.20 mA cm−2), but also manifest comparable OER activity with Ru/C. In the rechargeable zinc–air battery test, the bifunctional Co4N@NCNTs show excellent performance with high discharge and low charge potentials and relatively stable voltage gap as long as 500 cycles, which greatly outperform those of commercial Pt–Ru/C.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000409-sup-0001-SuppData-S1.docx4.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279; b) L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D. J. Liu, Science 2018, 362, 1276; c) G. Fu, Y. Tang, J.-M. Lee, ChemElectroChem 2018, 5, 1424; d) D. M. F. Santos, C. A. C. Sequeira, J. L. Figueiredo, Quim. Nova 2013, 36, 1176.
- 2a) M. Li, X. Bi, R. Wang, Y. Li, G. Jiang, L. Li, C. Zhong, Z. Chen, J. Lu, Matter 2020, 2, 32; b) C. Wang, Y. Yu, J. Niu, Y. Liu, D. Bridges, X. Liu, J. Pooran, Y. Zhang, A. Hu, Appl. Sci. 2019, 9, 2787; c) W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu, S. Wu, H. Wu, Z. Liu, C. Guan, J. Wang, S. J. Pennycook, ACS Catal. 2018, 8, 8961.
- 3D. Fang, H. Zhang, L. He, J. Geng, W. Song, S. Sun, Z. Shao, B. Yi, ChemElectroChem 2019, 6, 3633.
- 4a) M. Liu, Z. Zhao, X. Duan, Y. Huang, Adv. Mater. 2019, 31, e1802234; b) A. Mahata, A. S. Nair, B. Pathak, Catal. Sci. Technol. 2019, 9, 4835; c) G. Li, S. Li, J. Ge, C. Liu, W. Xing, J. Mater. Chem. A 2017, 5, 17221.
- 5a) C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li, Z. Hou, F.-Q. Bai, H.-X. Zhang, T.-Y. Ma. Adv. Energy Mater. 2017, 7, 1700193; b) K. Sun, J. Li, L. Huang, S. Ji, P. Kannan, D. Li, L. Liu, S. Liao, J. Power Sources 2019, 412, 433.
- 6a) S. Abinaya, P. Moni, V. Parthiban, A. K. Sahu, M. Wilhelm, ChemElectroChem 2019, 6, 3268; b) Y. Chen, I. Kone, Y. Gong, A. Xie, H. Hu, D. Kong, J. Liu, Y. Tang, X. Yang, R. Pang, P. Wan, Carbon 2019, 152, 325; c) M. Huang, Y. Tang, Y. Gong, Y. Chen, Y. Sun, X. Yang, P. Wan, ChemElectroChem 2015, 2, 2089; d) N. Huang, L. Yang, M. Zhang, S. Yan, Y. Ding, P. Sun, X. Sun, ChemElectroChem 2019, 6, 4522; e) I. Kone, A. Xie, Y. Tang, Y. Chen, J. Liu, Y. Chen, Y. Sun, X. Yang, P. Wan, ACS Appl. Mater. Interfaces 2017, 9, 20963; f) Q. Nie, Y. Cai, N. Xu, L. Peng, J. Qiao, ChemElectroChem 2018, 5, 1976; g) K. Kumar, I. Abidat, C. Canaff, A. Habrioux, C. Morais, T. W. Napporn, K. B. Kokoh, ChemElectroChem 2018, 5, 483; h) P. Lang, N. Yuan, Q. Jiang, Y. Zhang, J. Tang, Energy Technol. 2020, 8, 1900984.
- 7a) L. Cao, Z.-H. Li, Y. Gu, D.-H. Li, K.-M. Su, D.-J. Yang, B.-W. Cheng, J. Mater. Chem. A 2017, 5, 11340; b) L. Chen, Y. Zhang, X. Liu, L. Long, S. Wang, X. Xu, M. Liu, W. Yang, J. Jia, Carbon 2019, 151, 10; c) Y. Cheng, S. He, J. P. Veder, R. De Marco, S. Z. Yang, S. Ping Jiang, ChemElectroChem 2019, 6, 3478; d) H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63; e) S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Angew. Chem., Int. Ed. 2018, 57, 1856; f) J. Wang, F. Ciucci, Small 2017, 13, 1604103; g) W. Zhang, X. Zhao, Y. Zhao, J. Zhang, X. Li, L. Fang, L. Li, ACS Appl. Mater. Interfaces 2020, 12, 10280.
- 8a) H. Han, S. Chao, Z. Bai, X. Wang, X. Yang, J. Qiao, Z. Chen, L. Yang, ChemElectroChem 2018, 5, 1868; b) S. Dutta, Z. Liu, H. Han, A. Indra, T. Song, ChemElectroChem 2018, 5, 3571; c) W. Miao, Y. Zhang, H. Li, Z. Zhang, L. Li, Z. Yu, W. Zhang, J. Mater. Chem. A 2019, 7, 5504.
- 9a) D. Ding, K. Shen, X. Chen, H. Chen, J. Chen, T. Fan, R. Wu, Y. Li, ACS Catal. 2018, 8, 7879; b) C. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu, J. Li, Y. Yamauchi, Chem 2020, 6, 19; c) H. Wang, F. Yin, P. Lv, T. Fan, X. He, B. Chen, Int. J. Hydrogen Energy 2017, 42, 2127; d) R. Wang, T. Yan, L. Han, G. Chen, H. Li, J. Zhang, L. Shi, D. Zhang, J. Mater. Chem. A 2018, 6, 5752; e) X. Yao, J. Li, Y. Zhu, L. Li, W. Zhang, Compos. Part B-Eng. 2020, 193, 108058; f) R. R. Haikal, M. H. Hassan, M. H. Alkordi, Energy Technol. 2020, 8, 1900964.
- 10a) A. Hussain, Y. Liao, Q. Zhang, E. X. Ding, P. Laiho, S. Ahmad, N. Wei, Y. Tian, H. Jiang, E. I. Kauppinen, Nanoscale 2018, 10, 9752; b) Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou, J. Wang, Y. Wu, Y. Li, Adv. Mater. 2019, 31, 1808043.
- 11a) A. Aijaz, J. Masa, C. Rösler, H. Antoni, R. A. Fischer, W. Schuhmann, M. Muhler, Chem. – Eur. J. 2017, 23, 12125; b) Z. Hu, Z. Zhang, Z. Li, M. Dou, F. Wang, ACS Appl. Mater. Interfaces 2017, 9, 16109; c) J. H. Kim, S.-K. Park, Y. J. Oh, Y. C. Kang, Chem. Eng. J. 2018, 334, 2500; d) S. Wang, J. Qin, T. Meng, M. Cao, Nano Energy 2017, 39, 626.
- 12a) W. Shi, X. Xu, C. Ye, D. Sha, R. Yin, X. Shen, X. Liu, W. Liu, J. Shen, X. Cao, C. Gao, Front. Chem. 2019, 7, 449; b) B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006.
- 13a) M. Gupta, S. N. Pandey, S. M. Amir, S. Pütter, S. Mattauch, J. Magn. Magn. Mater. 2019, 489, 165376; b) R.-Q. Li, P. Hu, M. Miao, Y. Li, X.-F. Jiang, Q. Wu, Z. Meng, Z. Hu, Y. Bando, X.-B. Wang, J. Mater. Chem. A 2018, 6, 24767; c) M. D. Meganathan, S. Mao, T. Huang, G. Sun, J. Mater. Chem. A 2017, 5, 2972; d) B. Liu, J. Cheng, H.-Q. Peng, D. Chen, X. Cui, D. Shen, K. Zhang, T. Jiao, M. Li, C.-S. Lee, W. Zhang, J. Mater. Chem. A 2019, 7, 775.
- 14a) J. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu, D. Zhao, L. Mai, J. Am. Chem. Soc. 2017, 139, 8212; b) C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu, D. He, D. Xi, Q. Zhang, T. Yuan, Y. Qu, J. Yang, F. Zhou, Z. Yang, X. Wang, J. Wang, J. Luo, Y. Li, H. Duan, Y. Wu, Y. Li, Joule 2019, 3, 584.
- 15a) Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Sci Rep 2013, 3, 2771; b) H. Huang, X. Feng, C. Du, S. Wu, W. Song, J. Mater. Chem. A 2015, 3, 16050.
- 16Z. Liu, N. Li, H. Zhao, Y. Zhang, Y. Huang, Z. Yin, Y. Du, Chem. Sci. 2017, 8, 3211.
- 17A. Ejaz, S. Jeon, Int. J. Hydrogen Energy 2018, 43, 5690.
- 18T. Wu, X. Kong, S. Tong, Y. Chen, J. Liu, Y. Tang, X. Yang, Y. Chen, P. Wan, Appl. Surf. Sci. 2019, 489, 321.
- 19J. Su, G. Xia, R. Li, Y. Yang, J. Chen, R. Shi, P. Jiang, Q. Chen, J. Mater. Chem. A 2016, 4, 9204.
- 20W. Zhang, X. Yao, S. Zhou, X. Li, L. Li, Z. Yu, L. Gu, Small 2018, 14, e1800423.