Effective Preparation of Nanoscale CH3NH3PbI3 Perovskite Photosensitizers for Mesoporous TiO2-Based Solar Cells by Successive Precursor Layer Adsorption and Reaction Process
Myoung Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorSeul-Yi Lee
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorSo-Min Yoo
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorSanghyun Paek
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorYonghui Lee
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorKyung Taek Cho
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorIwan Zimmermann
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorHae-Yeon Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorBeom-Seok Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorMin-Kyeong Song
Center for University-Wide Research Facilities (CURF), Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorTaeho Shin
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorKyoungsoo Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorCorresponding Author
Aron J. Huckaba
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorCorresponding Author
Mohammad Khaja Nazeeruddin
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorCorresponding Author
Hyo J. Lee
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorMyoung Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorSeul-Yi Lee
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorSo-Min Yoo
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorSanghyun Paek
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorYonghui Lee
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorKyung Taek Cho
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorIwan Zimmermann
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorHae-Yeon Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorBeom-Seok Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorMin-Kyeong Song
Center for University-Wide Research Facilities (CURF), Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorTaeho Shin
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorKyoungsoo Kim
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorCorresponding Author
Aron J. Huckaba
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorCorresponding Author
Mohammad Khaja Nazeeruddin
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL Valais, Sion, 1951 Switzerland
Search for more papers by this authorCorresponding Author
Hyo J. Lee
Department of Chemistry, Chonbuk National University, Jeonju, 561-756 South Korea
Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-756 South Korea
Search for more papers by this authorAbstract
Nanoscale CH3NH3PbI3 perovskite sensitizers are grown by delivering each precursor successively onto the surface of mesoporous (meso) TiO2 electrodes. Using Pb(NO3)2 ions as a lead(II) source and CH3NH3I (MAI) for methylammonium and iodide sources, repetitive cycles of the two dipping steps are successful in growing few nanometer-sized MAPbI3 gradually on the TiO2 surface inside the meso-TiO2 film. However, some aggregates are observed on the top surface of the meso-TiO2 film due to slight dissolution of PbI2 and its accumulation/reaction with MAI at the top surface of the meso-TiO2 film. To solve this inhomogeneity of the deposition, a nondestructive multiple deposition route for nanoscale MAPbI3 is suggested as a successive precursor layer adsorption and reaction (SPLAR) process where, from the second cycle of deposition, PbI2 is delivered with the help of an ionic liquid compound dissolved in dichloromethane. With this new Pb precursor in less-polar solvents, nanoscale MAPbI3 sensitizers are grown without dissolution of preformed perovskites or formation of some aggregates at the top surface. After the third cycle of SPLAR deposition, about 7.0 nm–sized MAPbI3 sensitizers are prepared and display enhanced photovoltaic performance (7.18 ± 0.31%) compared with devices obtained from only one cycle (5.74 ± 0.30%).
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901186-sup-0001-SuppData-S1.docx1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Pan, H. Rao, I. Mora-Seró, J. Bisquert, X. Zhong, Chem. Soc. Rev. 2018, 47, 7659.
- 2J. Su, L. Guo, N. Bao, C. A. Grimes, Nano Lett. 2011, 11, 1928.
- 3S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466.
- 4C. M. Tyrakowski, A. Shamirian, C. E. Rowland, H. Shen, A. Das, R. D. Schaller, P. T. Snee, Chem. Mater. 2015, 27, 7276.
- 5T. Teranishi, M. Sakamoto, J. Phys. Chem. Lett. 2013, 4, 2867.
- 6S. S. Lo, T. Mirkovic, C.-H. Chuang, C. Burda, G. D. Scholes, Adv. Mater. 2011, 23, 180.
- 7A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
- 8A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Langmuir 1998, 14, 3153.
- 9H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Gräzel, M. K. Nazeeruddin, J. Phys. Chem. C 2008, 112, 11600.
- 10H. M. Pathan, C. D. Lokhande, Bull. Mater. Sci. 2004, 27, 85.
- 11H. J. Lee, P. Chen, S.-J. Moon, S. Frederic, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, M. K. Nazeeruddin, Langmuir 2009, 25, 7602.
- 12H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, M. K. Nazeeruddin, Nano Lett. 2009, 9, 4221.
- 13B. Saparov, B. D. B. Mitzi, Chem. Rev. 2016, 116, 4558.
- 14J. Sun, J. Wu, X. Tong, F. Lin, Y. Wang, Z. M. Wang, Adv. Sci. 2018, 5, 1700780.
- 15D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2016, 2, e1501170.
- 16H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X.-Y. Zhu, Nat. Mater. 2015, 14, 636.
- 17S. Kazim, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2014, 53, 2812.
- 18H. Shen, T. Duong, Y. Wu, J. Peng, D. Jacobs, N. Wu, K. Weber, T. White, K. Catchpole, Sci. Technol. Adv. Mater. 2018, 19, 53.
- 19C.-Y. Chang, Y.-C. Huang, C.-S. Tsao, W.-F. Su, ACS Appl. Mater. Interfaces 2016, 8, 26712.
- 20D. Wang, M. Wright, N. K. Elumalai, A. Uddin, Sol. Energy Mater. Sol. Cells 2016, 147, 255.
- 21A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 22F. K. Aldibaja, L. Badia, E. Mas-Marzá, R. S. Sánchez, E. M. Barea, I. Mora-Sero, J. Mater. Chem. A 2015, 3, 9194.
- 23D. T. Moore, H. Sai, K. W. Tan, D.-M. Smilgies, W. Zhang, H. J. Snaith, U. Wiesner, L. A. Estroff, J. Am. Chem. Soc. 2015, 137, 2350.
- 24T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, T. Miyasaka, Chem. Commun. 2015, 51, 13294.
- 25W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Horantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, H. J. Snaith, Nat. Commun. 2015, 6, 6142.
- 26D. V. Shinde, L. Pyeon, M. Pei, G.-W. Kim, H. Yang, T. Park, ACS Appl. Mater. Interfaces 2017, 9, 14023.
- 27H. J. Lee, H. C. Leventis, S.-J. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nuesch, T. Geiger, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin, Adv. Funct. Mater. 2009, 19, 2735.
- 28S. Luo, W. A. Daoud, Materials 2016, 9, 123.
- 29T. J. Jacobsson, J.-P. Correa-Baena, E. H. Anaraki, B. Philippe, S. D. Stranks, M. E. F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.-E. Moser, H. Rensmo, A. Hagfeldt, J. Am. Chem. Soc. 2016, 138, 10331.
- 30C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Grätzel, M. K. Nazeeruddin, Energy Environ. Sci. 2015, 8, 3550.
- 31T. P. Gujar, T. Unger, A. Schönleber, M. Fried, F. Panzer, S. van Smaalen, A. Köhler, M. Thelakkat, Phys. Chem. Chem. Phys. 2018, 20, 605.
- 32J. Barbé, M. Newman, S. Lilliu, V. Kumar, H. K. H. Lee, C. Charbonneau, C. Rodenburg, D. Lidzey, W. C. Tsoi, J. Mater. Chem. A 2018, 6, 23010.
- 33K. E. Roelofs, S. M. Herron, S. F. Bent, ACS Nano 2015, 9, 8321.
- 34M. Kim, A. Ochirbat, H. J. Lee, Langmuir 2015, 31, 7609.
- 35H. J. Lee, J. Bang, J. Park, S. Kim, S.-M. Park, Chem. Mater. 2010, 22, 5636.
- 36R. Parize, T. Cossuet, E. Appert, O. Chaix-Pluchery, H. Roussel, L. Rapenne, V. Consonni, CrystEngComm 2018, 20, 4455.
- 37X. Zhang, Y. Xu, F. Giordano, M. Schreier, N. Pellet, Y. Hu, C. Yi, N. Robertson, J. Hua, S. M. Zakeeruddin, H. Tian, M. Grätzel, J. Am. Chem. Soc. 2016, 138, 10742.
- 38U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 1998, 395, 583.
- 39J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2011, 133, 18042.
- 40Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S. M. Zakeeruddin, J.-E. Moser, M. Freitag, A. Hagfeldt, M. Grätzel, Nat. Commun. 2017, 8, 15390.
- 41Y. Zhang, G. Grancini, Z. Fei, E. Shirzadi, X. Liu, E. Oveisi, F. F. Tirani, R. Scopelliti, Y. Feng, M. K. Nazeeruddin, P. J. Dyson, Nano Energy 2019, 58, 105.
- 42Y. Zhang, Z. Fei, P. Gao, Y. Lee, F. F. Tirani, R. Scopelliti, Y. Feng, P. J. Dyson, M. K. Nazeeruddin, Adv. Mater. 2017, 29, 1702157.
- 43R. Xia, Z. Fei, N. Drigo, F. D. Bobbink, Z. Huang, R. Jasiūnas, M. Franckevičius, V. Gulbinas, M. Mensi, X. Fang, C. Roldán-Carmona, M. K. Nazeeruddin, P. J. Dyson, Adv. Funct. Mater. 2019, 29, 1902021.
- 44M. Salado, E. Shirzadi, S. Kazim, Z. Fei, M. K. Nazeeruddin, P. J. Dyson, S. Ahmad, ChemPlusChem 2018, 83, 279.
- 45H. J. Lee, K. T. Cho, S. Paek, Y. Lee, A. J. Huckaba, V. I. E. Queloz, I. Zimmermann, G. Grancini, E. Oveisi, S.-M. Yoo, S.-Y. Lee, T. Shin, M. Kim, M. K. Nazeeruddin, Adv. Funct. Mater. 2018, 28, 1803801.
- 46J.-W. Lee, Y. J. Choi, J.-M. Yang, S. Ham, S. K. Jeon, J. Y. Lee, Y.-H. Song, E. K. Ji, D.-H. Yoon, S. Seo, H. Shin, G. S. Han, H. S. Jung, D. Kim, N.-G. Park, ACS Nano 2017, 11, 3311.
- 47O. G. Reid, M. Yang, N. Kopidakis, K. Zhu, G. Rumbles, ACS Energy Lett. 2016, 1, 561.
- 48Y. J. Choi, L. Debbichi, D.-K. Lee, N.-G. Park, H. Kim, D. Kim, J. Phys. Chem. Lett. 2019, 10, 2135.
- 49E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J. Am. Chem. Soc. 2003, 125, 475.
- 50H.-W. Kang, J.-W. Lee, N.-G. Park, Faraday Discuss. 2014, 176, 287.
- 51K. T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee, M. K. Nazeeruddin, Energy Environ. Sci. 2017, 10, 621.
- 52K. T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu, O. Almora, M. Tschumi, P. A. Schouwink, G. Seo, S. Heo, J. Park, J. Jang, S. Paek, G. Garcia-Belmonte, M. K. Nazeeruddin, Energy Environ. Sci. 2018, 11, 952.
- 53N. N. Al-Mohammed, R. S. Duali Hussen, Y. Alias, Z. Abdullah, RSC Adv. 2016, 5, 2869.
- 54M. Rodríguez-Castillo, D. Laurencin, F. Tielens, A. van der Lee, S. Clément, Y. Guari, S. Richeter, Dalton Trans. 2014, 43, 5978.