Facile Synthesis of Flock-Like V2O3/C with Improved Electrochemical Performance as an Anode Material for Li-Ion Batteries
Leichao Meng
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorCorresponding Author
Ruisong Guo
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorFuyun Li
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYuanliang Ma
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorJianhong Peng
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorTingting Li
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYani Luo
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYouzhen Li
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorCorresponding Author
Xiaohong Sun
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorLeichao Meng
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorCorresponding Author
Ruisong Guo
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorFuyun Li
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYuanliang Ma
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorJianhong Peng
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorTingting Li
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYani Luo
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYouzhen Li
School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007 China
Search for more papers by this authorCorresponding Author
Xiaohong Sun
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorAbstract
V2O3 is considered to be a potential anode material due to its large specific capacity and rich resources. Herein, flock-like V2O3 coated with carbon is prepared through a facile and simple solvothermal method followed by annealing at a relatively low temperature. The structure of V2O3/C is composed of porous strips. Due to the unique morphology and structure, the V2O3/C anode material shows excellent electrochemical performance. It delivers a specific discharge capacity of 696 mAh g−1 after 100 cycles, which is 95% of the specific discharge capacity (732 mAh g−1) after the sixth cycle. The V2O3/C anode material annealed at 360 °C (V2O3/C-360) delivers 601 mAh g−1 at a current density of 300 mA g−1 after 500 cycles. It implies superior cyclic stability of V2O3/C-360. In addition, the anode also shows excellent rate capability. Specific capacities of approximately 600, 420, and 300 mAh g−1 are obtained at the current densities of 0.3, 2, and 5 A g−1, respectively. The large current contribution of the capacitive reveals favorable superior lithium storage kinetics. This anode material presents great application potential in high-performance lithium-ion batteries.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900986-sup-0001-SuppData-S1.docx8.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Larcher, J. Tarascon, Nat. Chem. 2015, 7, 19.
- 2B. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419.
- 3M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
- 4X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, Y. Dai, J. Mater. Chem. 2018, 7, 2165.
10.1039/C8TA10936B Google Scholar
- 5H. Li, P. Balaya, J. Maier, J. Electrochem. Soc. 2004, 151, 1878.
- 6C. Han, F. Liu, J. Liu, Q. Li, J. Meng, B. Shao, Q. He, X. Wang, Z. Liu, L. Mai, J. Mater. Chem. A 2018, 6, 6220.
- 7B. Xiao, B. Zhang, H. Tong, W. Yu, J. Zheng, Ceram. Int. 2018, 44, 15044.
- 8T. Li, R. Guo, Y. Luo, F. Li, Z. Liu, L. Meng, Y. Wan, Electrochim. Acta 2018, 290, 128.
- 9Y. Bai, Y. Tang, Y. Gao, L. Liu, Y. Zhang, S. Gao, J. Alloys Compd. 2019, 798, 678.
- 10Y. Cui, X. Zhao, R. Guo, J. Alloys Compd. 2010, 490, 236.
- 11Y. Tang, L. Liu, Y. Zhang, S. Gao, New J. Chem. 2018, 42, 19340.
- 12B. Xiao, W. Zhang, P. Wang, H. Tong, J. Zheng, B. Wang, Electrochim. Acta 2019, 306, 238.
- 13Y. Bai, Y. Tang, L. Liu, X. Li, Y. Gao, ACS Sustainable Chem. Eng. 2018, 6, 14614.
- 14X. Liu, R. Liu, L. Zeng, M. Huang, X. Chen, C. Zheng, Y. Xu, Q. Chen, New J. Chem. 2017, 41, 5380.
- 15C. Liu, T. Peng, C. Wang, Y. Lu, H. Yan, Y. Luo, J. Alloys Compd. 2017, 720, 86.
- 16J. Xia, Y. Guo, R. Tian, R. Guo, Y. Chen, H. Duan, H. Li, H. Liu, J. Mater. Sci. Mater. Electron. 2018, 29, 5299.
- 17M. Piao, C. Li, M.-K. Joo, J. Chu, X. Wang, Y. Chi, H. Zhang, H. Shi, Energy Technol. 2018, 6, 1921.
- 18K. A. Kurilenko, D. V. Gorbunov, O. A. Shlyakhtin, Ionics 2016, 22, 601.
- 19H. Ma, Z. Yuan, F. Cheng, J. Liang, Z. Tao, J. Chen, J. Alloys Compd. 2011, 509, 6030.
- 20M. Yang, X. Fu, J. Zhang, Z. Wang, B. Wang, L. He, Z. Wu, H. Cheng, H. Pan, Z. Lu, Energy Technol. 2018, 7, 1800784.
- 21J. Feng, H. Wang, Z. Hu, M. Zhang, X. Yang, R. Yuan, Y. Cha, Ceram. Int. 2019, 45, 13369.
- 22R. Yi, J. Fenga, D. Lv, S. Chen, D. Choib, D. Wang, Nano Energy 2013, 2, 498.
- 23Y. Zhao, A. Manthiram, J. Chem. Commun. 2015, 51, 13205.
- 24X. Jiang, Y. Wang, T. Herricks, Y. Xia, J. Mater. Chem. 2004, 14, 695.
- 25J. Ludwig, C. Marino, D. Haering, C. Stinner, D. Nordlund, M. Doeff, H. Gasteiger, T. Nilges, RSC Adv. 2016, 6, 82984.
- 26L. Jiang, Y. Qu, Z. Ren, P. Yu, H. Fu, ACS Appl. Mater. Interfaces 2015, 7, 1595.
- 27J. Wang, Z. Liu, W. Yang, L. Han, M. Wei, Chem. Commun. 2018, 54, 7346.
- 28I. Mjejri, A. Rougier, M. Gaudon, Inorg. Chem. 2017, 56, 1734.
- 29J. H. Ku, J. H. Ryu, S. H. Kim, O. H. Han, S. M. Oh, Adv. Funct. Mater. 2012, 22, 3658.
- 30D. Zhao, L. Zheng, Y. Xiao, X. Wang, M. Cao, ChemSusChem. 2015, 8, 2212.
- 31T. Zeng, C. Zhang, Ionics 2019, 25, 4149.
- 32S. Ni, J. Liu, D. Chao, L. Mai, Adv. Energy. Mater. 2019, 9, 1803324.
- 33R. Yadav, C. K. Dixit, J. Sci. Adv. Mater. Dev. 2017, 2, 141.
- 34X. Hu, X. Sun, M. Yang, H. Ji, X. Li, S. Cai, J. Mater. Sci. 2017, 52, 3597.
- 35Q. Wang, M. Yang, Z. Wang, C. Li, D. Gu, Small 2018, 14, 1703279.
- 36Y. Zhou, J. Yang, H. Liang, J. Pi, C. Zhang, Z. Xu, Compos. Commun. 2018, 8, 46.
- 37D. H. Everett, G. D. Parfitt, K. S. W. Sing, R. Wilson, J. Chem. Technol. Biotechnol. 1974, 24, 199.
- 38S. G. Bogdanov, A. N. Pirogo, J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2015, 9, 616.
- 39Y. Lu, X. Yao, J. Yin, G. Peng, P. Cui, X. Xu, RSC Adv. 2015, 5, 7938.
- 40X. Du, H. Zhao, Y. Lu, Z. Zhang, A. Kulka, K. Świerczek, Electrochim. Acta 2017, 228, 100.
- 41L. Xiao, Y. Zhao, J. Yin, L. Zhang, Chem. A Eur. J. 2009, 15, 9442.
- 42Y. Nan, S. Li, B. Li, S. Yang, Nanoscale 2019, 11, 2194.
- 43Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu, M. Yan, Nano Energy 2014, 4, 23.
- 44L. Shen, H. Lv, S. Chen, P. Kopold, Y. Yu, Adv. Mater. 2017, 29, 1700142.
- 45P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.
- 46T. Liu, W. G. Pell, B. E. Conway, S. L. Roberson, J. Electrochem. Soc. 1998, 145, 1882.
- 47Y. Tang, L. Liu, H. Zhao, Y. Zhang, L. B. Kong, S. Gao, X. Li, L. Wang, D. Jia, ACS Appl. Mater. Interfaces 2018, 10, 20225.
- 48A. Eftekhari, J. Power Sources 2017, 343, 395.