Continuous Hydrothermal Synthesis of Metal Germanates (M2GeO4; M = Co, Mn, Zn) for High-Capacity Negative Electrodes in Li-Ion Batteries
Dustin Bauer
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan
Search for more papers by this authorThomas E. Ashton
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorAlexandra R. Groves
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorAvishek Dey
School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA UK
Search for more papers by this authorSatheesh Krishnamurthy
School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA UK
Search for more papers by this authorNoriyoshi Matsumi
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan
Search for more papers by this authorCorresponding Author
Jawwad A. Darr
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorDustin Bauer
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan
Search for more papers by this authorThomas E. Ashton
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorAlexandra R. Groves
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorAvishek Dey
School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA UK
Search for more papers by this authorSatheesh Krishnamurthy
School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA UK
Search for more papers by this authorNoriyoshi Matsumi
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan
Search for more papers by this authorCorresponding Author
Jawwad A. Darr
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
Search for more papers by this authorAbstract
Nanosized metal germanates (M2GeO4; M = Co, Mn, Zn) are synthesized using a continuous hydrothermal flow synthesis process for the first time. The electrochemical properties of all samples as active materials for negative electrodes in Li-ion half cells are explored. The galvanostatic and potentiodynamic testing is conducted in the potential range of 3.00–0.05 V versus Li/Li+. The results suggest that both alloying and conversion reactions associated with Ge contribute to the stored charge capacity; Zn2GeO4 shows a high specific capacity of 600 mAh g−1 (ten cycles at 0.1 A g−1) due to alloying and conversion reactions for both Ge and Zn. Mn2GeO4 is studied for the first time as a potential negative electrode material in a Li-ion half cell; an excellent specific charge capacity of 510 mAh g−1 (10 cycles per 0.1 A g−1) is obtained with a significant contribution to charge arising from the conversion reaction of Mn to MnO upon delithiation. In contrast, Co2GeO4 only shows a specific capacity of 240 mAh g−1, after ten cycles at the same current rate, which suggests that cobalt has little or no benefit for enhancing stored charge in germanate.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900692-sup-0001-SuppData-S1.docx3.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.
- 2M. R. Palacín, Chem. Soc. Rev. 2009, 38, 2565.
- 3P. G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem., Int. Ed. 2008, 47, 2930.
- 4K. Tang, X. Mu, P. A. van Aken, Y. Yu, J. Maier, Adv. Energy Mater. 2013, 3, 49.
- 5P. V. Braun, J. Cho, J. H. Pikul, W. P. King, H. Zhang, Curr. Opin. Solid State Mater. Sci. 2012, 16, 186.
- 6S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, J. Power Sources 2014, 257, 421.
- 7M. Ge, J. Rong, X. Fang, C. Zhou, Nano Lett. 2012, 12, 2318.
- 8Z.-W. Fu, F. Huang, Y. Zhang, Y. Chu, Q.-Z. Qin, J. Electrochem. Soc. 2003, 150, A714.
- 9R. A. Huggins, J. Power Sources 1999, 81–82, 13.
- 10W. J. Zhang, J. Power Sources 2011, 196, 877.
- 11Y. Feng, X. Li, Z. Shao, H. Wang, J. Mater. Chem. A 2015, 3, 15274.
- 12S. Yuvaraj, R. K. Selvan, Y. S. Lee, RSC Adv. 2016, 6, 21448.
- 13N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, Y. Cui, Nano Lett. 2012, 12, 3315.
- 14J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170.
- 15L. Croguennec, M. R. Palacin, J. Am. Chem. Soc. 2015, 137, 3140.
- 16Y. M. Lin, K. C. Klavetter, A. Heller, C. B. Mullins, J. Phys. Chem. Lett. 2013, 4, 999.
- 17J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, J. Electrochem. Soc. 2004, 151, A698.
- 18T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha, D. K. Yi, J. M. Choi, H. Chang, Y. M. Choi, U. Paik, Energy Environ. Sci. 2012, 5, 9028.
- 19W. Liang, H. Yang, F. Fan, Y. Liu, X. H. Liu, J. Y. Huang, T. Zhu, S. Zhang, ACS Nano 2013, 7, 3427.
- 20S. Jin, G. Yang, H. Song, H. Cui, C. Wang, ACS Appl. Mater. Interfaces 2015, 7, 24932.
- 21J. S. Penña, I. Sandu, O. Joubert, F. S. Pascual, C. O. Areaán, T. Brousse, Electrochem. Solid-State Lett. 2004, 7, A278.
10.1149/1.1778931 Google Scholar
- 22W. Chen, L. Lu, S. Maloney, Y. Yang, W. Wang, Phys. Chem. Chem. Phys. 2015, 17, 5109.
- 23F. Zou, X. Hu, L. Qie, Y. Jiang, X. Xiong, Y. Qiao, Y. Huang, Nanoscale 2014, 6, 924.
- 24Q. Li, X. Miao, C. Wang, L. Yin, J. Mater. Chem. A 2015, 3, 21328.
- 25R. Wang, S. P. Wu, Y. C. Lv, Z. Q. Lin, Langmuir 2014, 30, 8215.
- 26J. K. Feng, M. O. Lai, L. Lu, Electrochem. Commun. 2011, 13, 287.
- 27W. Chen, S. Maloney, W. Wang, Electrochim. Acta 2015, 176, 96.
- 28J. A. Darr, J. Zhang, N. M. Makwana, X. Weng, Chem. Rev. 2017, 117, 11125.
- 29R. I. Gruar, C. J. Tighe, J. A. Darr, Ind. Eng. Chem. Res. 2013, 52, 5270.
- 30D. Bauer, A. J. Roberts, C. L. Starkey, R. Vedarajan, D. J. L. Brett, P. R. Shearing, N. Matsumi, J. A. Darr, Int. J. Electrochem. Sci. 2018, 13, 5120.
- 31D. Bauer, A. J. Roberts, S. G. Patnaik, D. J. L. Brett, P. R. Shearing, E. Kendrick, N. Matsumi, J. A. Darr, J. Electrochem. Soc. 2018, 165, A1662.
- 32D. Bauer, A. J. Roberts, N. Matsumi, J. A. Darr, Nanotechnology 2017, 28, 195403.
- 33J. A. Darr, C. J. Tighe, R. I. Gruar, US2013/0136687 A1, 2013.
- 34C. J. Denis, C. J. Tighe, R. I. Gruar, N. M. Makwana, J. A. Darr, Cryst. Growth Des. 2015, 15, 4256.
- 35S. Jin, G. Yang, H. Song, H. Cui, C. Wang, ACS Appl. Mater. Interfaces 2015, 7, 24932.
- 36U. Holzwarth, N. Gibson, Nat. Nanotechnol. 2011, 6, 534.
- 37S. Yan, L. Wan, Z. Li, Z. Zou, Chem. Commun. 2011, 47, 5632.
- 38S. Wu, Z. Wang, X. Ouyang, Z. Lin, Nanoscale 2013, 5, 12335.
- 39X. Ge, S. Song, H. Zhang, CrystEngComm 2012, 14, 7306.
- 40J. Liu, G. Zhang, J. C. Yu, Y. Guo, Dalton Trans. 2013, 42, 5092.
- 41M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717.
- 42Y. Chen, Y. Lin, N. Du, C. Xiao, S. Wu, Y. Zhang, D. Yang, Energy Technol. 2017, 5, 1656.
- 43R. Yi, J. Feng, D. Lv, M. L. Gordin, S. Chen, D. Choi, D. Wang, Nano Energy 2013, 2, 498.
- 44J. Chen, Y. Wang, X. He, S. Xu, M. Fang, X. Zhao, Y. Shang, Electrochim. Acta 2014, 142, 152.
- 45I. Sandu, P. Moreau, D. Guyomard, T. Brousse, L. Roué, Solid State Ionics 2007, 178, 1297.
- 46Y. Yang, Y. Bai, S. Zhao, Q. Chang, W. Zhang, J. Alloys Compd. 2013, 579, 7.
- 47G. Carbonari, F. Maroni, A. Birrozzi, R. Tossici, F. Croce, F. Nobili, Electrochim. Acta 2018, 281, 676.