Facile Synthesis of Binary Transition Metal Sulfide Tubes Derived from NiCo-MOF-74 for High-Performance Supercapacitors
Corresponding Author
Jianhua Yu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorXiaolei Gao
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorZhenxing Cui
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorYu Jiao
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorQian Zhang
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorHongzhou Dong
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorCorresponding Author
Liyan Yu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorCorresponding Author
Lifeng Dong
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Department of Physics, Hamline University, St. Paul, 55104 USA
Search for more papers by this authorCorresponding Author
Jianhua Yu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorXiaolei Gao
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorZhenxing Cui
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorYu Jiao
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorQian Zhang
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorHongzhou Dong
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorCorresponding Author
Liyan Yu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorCorresponding Author
Lifeng Dong
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Department of Physics, Hamline University, St. Paul, 55104 USA
Search for more papers by this authorAbstract
Recently, binary transition metal oxides, phosphates, and sulfides have attracted wide attention due to their potential applications in supercapacitors. The emergence of metal-organic frameworks (MOFs) provides new opportunities for the synthesis and investigation of porous binary metal compounds with similar microstructures. Herein, binary metal oxide (NiCo-O) tubular structures are derived from NiCo-MOF-74 via a facile annealing process, and then phosphate (NiCo-P) and sulfide (NiCo-S) structures are obtained from NiCo-O by heat treatment and solvothermal process, respectively. Among the three derivatives, NiCo-S with nanosheet structures has the highest specific capacitance of 930.4 F g−1 at a current density of 1 A g−1 and an excellent rate capability with a retention of ≈80% at 10 A g−1. The long-term cycling performance of NiCo-S is superior with 70.5% retention after 10 000 cycles. The hybrid supercapacitor device with NiCo-S and activated carbon as positive and negative electrodes delivers a high energy density of 22.6 W h kg−1 at a power density of 800 W kg−1. The excellent performance of NiCo-S can be attributed to its nanosheet structure, which increases the specific surface area and electroactive sites.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900018-sup-0001-SuppData-S1.pdf1.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Nat. Chem. 2016, 8, 718.
- 2D. P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 2015, 44, 1777.
- 3L. F. Shen, J. Wang, G. Y. Xu, H. S. Li, H. Dou, X. G. Zhang, Adv. Energy Mater. 2015, 5, 1400977.
- 4L. F. Chen, Z. H. Huang, H. W. Liang, Q. F. Guan, S. H. Yu, Adv. Mater. 2013, 25, 4746.
- 5C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai, B. M. Deglee, Y. Chen, K. S. Walton, R. Zou, M. Liu, ACS Energy Lett. 2017, 2, 1263.
- 6H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Lei, X. Gong, ACS Appl. Mater. Interfaces 2017, 9, 17067.
- 7H. Kim, M. Y. Cho, M. H. Kim, K. Y. Park, H. Gwon, Y. Lee, K. C. Roh, K. Kang, Adv. Energy Mater. 2013, 3, 1500.
- 8T. Li, G. Luo, K. Liu, X. Li, D. Sun, L. Xu, Y. Li, Y. Tang, Adv. Funct. Mater. 2018, 28, 1805828.
- 9L. N. Sui, Y. T. Wang, L. Y. Yu, H. Z. Dong, L. F. Dong, J. Electrochem. Soc. 2016, 163, E179.
- 10H. Q. Kang, L. N. Sui, Y. T. Wang, S. Zhang, H. Z. Dong, L. Y. Yu, L. F. Dong, J. Electrochem. Soc. 2017, 164, A2328.
- 11S. Zhang, L. N. Sui, H. Z. Dong, W. B. He, L. F. Dong, L. Y. Yu, ACS Appl. Mater. Interfaces 2018, 10, 12983.
- 12S. Zhang, L. N. Sui, H. Q. Kang, H. Z. Dong, L. F. Dong, L. Y. Yu, Small 2018, 14, 1702570.
- 13Z. Yu, B. Duong, D. Abbitt, J. Thomas, Adv. Mater. 2013, 25, 3302.
- 14S. Wu, K. S. Hui, K. N. Hui, K. H. Kim, J. Mater. Chem. A 2016, 4, 9113.
- 15C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, ACS Nano 2015, 9, 1730.
- 16A. Pendashteh, S. E. Moosavifard, M. S. Rahmanifar, Y. Wang, M. F. El-Kady, R. B. Kaner, M. F. Mousavi, Chem. Mater. 2015, 27, 3919.
- 17D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, Nano Energy 2014, 8, 174.
- 18C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. W. Lou, Adv. Funct. Mater. 2012, 22, 4592.
- 19J. Wang, X. Zhang, Q. L. Wei, H. M. Lv, Y. L. Tian, Z. Q. Tong, X. S. Liu, J. Hao, H. Y. Qu, J. P. Zhao, Y. Li, L. Q. Mai, Nano Energy 2016, 19, 222.
- 20X. Wu, Z. C. Han, X. Zheng, S. Y. Yao, X. Yang, T. Y. Zhai, Nano Energy 2017, 31, 410.
- 21Q. Yang, S. Y. Lin, RSC Adv. 2016, 6, 10520.
- 22Y. Zhang, Y. Zhao, S. Cao, Z. Yin, L. Cheng, L. Wu, ACS Appl. Mater. Interfaces 2017, 9, 29982.
- 23Z. Q. Zhang, H. D. Zhang, X. Y. Zhang, D. Y. Yu, Y. Ji, Q. S. Sun, Y. Wang, X. Y. Liu, J. Mater. Chem. A 2016, 4, 18578.
- 24T. Zhai, L. M. Wan, S. Sun, Q. Chen, J. Sun, Q. Y. Xia, H. Xia, Adv. Mater. 2017, 29, 1604167.
- 25X. Chen, D. Chen, X. Guo, R. Wang, H. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 18774.
- 26W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, ACS Appl. Mater. Interfaces 2014, 6, 19318.
- 27S. Sahoo, A. K. Satpati, P. K. Sahoo, P. D. Naik, ACS Omega 2018, 3, 17936.
- 28L. Peng, Z. Fang, Y. Zhu, C. Yan, G. Yu, Adv. Energy Mater. 2018, 8, 1702179.
- 29J. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. Liu, M. H. Rummeli, Chem. Soc. Rev. 2019, 48, 72.
- 30Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu, L. Xu, Y. Tang, Adv. Mater. 2019, 31, 1806312.
- 31L. R. Kong, Q. R. Chen, X. P. Shen, Z. Y. Xu, C. Xu, Z. Y. Ji, J. Zhu, Electrochim. Acta 2018, 265, 651.
- 32I. A. Khan, A. Badshah, I. Khan, D. Zhao, M. A. Nadeem, Microporous Mesoporous Mater. 2017, 253, 169.
- 33Y. Liu, G. Li, Y. Guo, Y. Ying, X. Peng, ACS Appl. Mater. Interfaces 2017, 9, 14043.
- 34Z. Li, X. Lai, H. Wang, D. Mao, C. Xing, D. Wang, J. Phys. Chem. C 2009, 113, 2792.
- 35Y. Liu, H. Jiang, J. Hao, Y. Liu, H. Shen, W. Li, J. Li, ACS Appl. Mater. Interfaces 2017, 9, 31841.
- 36J. C. Zhang, C. Y. Xu, D. J. Zhang, J. L. Zhao, S. X. Zheng, H. M. Su, F. F. Wei, B. Q. Yuan, C. Fernandez, J. Electrochem. Soc. 2017, 164, B92.
- 37L. Sui, Y. Wang, W. Ji, H. Kang, L. Dong, L. Yu, Int. J. Hydrogen Energy 2017, 42, 29820.
- 38J. S. Chen, C. Guan, Y. Gui, D. J. Blackwood, ACS Appl. Mater. Interfaces 2017, 9, 496.
- 39M. Liu, J. Li, ACS Appl. Mater. Interfaces 2016, 8, 2158.
- 40C. Liu, S. Zhao, Y. Lu, Y. Chang, D. Xu, Q. Wang, Z. Dai, J. Bao, M. Han, Small 2017, 13, 1603494.
- 41C. Qu, L. Zhang, W. Meng, Z. B. Liang, B. J. Zhu, D. Dang, S. G. Dai, B. T. Zhao, H. Tabassum, S. Gao, H. Zhang, W. H. Guo, R. Zhao, X. Y. Huang, M. L. Liu, R. Q. Zou, J. Mater. Chem. A 2018, 6, 4003.
- 42X. Fang, L. Jiao, R. Zhang, H.-L. Jiang, ACS Appl. Mater. Interfaces 2017, 9, 23852.
- 43H. F. Yang, Y. H. Tang, X. Y. Sun, Q. Liu, X. G. Huang, L. X. Wang, Z. X. Fu, Q. T. Zhang, S. W. Or, J. Mater. Sci.: Mater. Electron. 2017, 28, 14874.
- 44S. R. Chen, M. Xue, Y. Q. Li, Y. Pan, L. K. Zhu, S. L. Qiu, J. Mater. Chem. A 2015, 3, 20145.
- 45F. Han, C. Y. J. Tan, Z. Q. Gao, J. Power Sources 2017, 339, 41.
- 46Q. Liu, J. Y. Zhang, CrystEngComm 2013, 15, 5087.
- 47I. Y. Kim, Y. K. Jo, J. M. Lee, L. Wang, S.-J. Hwang, J. Phys. Chem. Lett. 2014, 5, 4149.
- 48H. Xia, Q. Xu, J. Zhang, Nano-Micro Lett. 2018, 10, 66.
- 49W. Chen, C. Xia, H. N. Alshareef, ACS Nano 2014, 8, 9531.
- 50C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Nano Energy 2016, 27, 377.