Analyzing big data in social media: Text and network analyses of an eating disorder forum
Corresponding Author
Markus Moessner PhD
Center for Psychotherapy Research, University Hospital Heidelberg, Heidelberg, Germany
Correspondence Dr. Markus Moessner, Center for Psychotherapy Research, University Hospital Heidelberg, Bergheimer Str. 54, 69115 Heidelberg, Germany. Email: [email protected]Search for more papers by this authorJohannes Feldhege MSC
Center for Psychotherapy Research, University Hospital Heidelberg, Heidelberg, Germany
Markus Moessner and Johannes Feldhege should be considered joint first author
Search for more papers by this authorMarkus Wolf PhD
Department of Psychology, University of Zurich, Zurich, Switzerland
Search for more papers by this authorStephanie Bauer PhD
Center for Psychotherapy Research, University Hospital Heidelberg, Heidelberg, Germany
Search for more papers by this authorCorresponding Author
Markus Moessner PhD
Center for Psychotherapy Research, University Hospital Heidelberg, Heidelberg, Germany
Correspondence Dr. Markus Moessner, Center for Psychotherapy Research, University Hospital Heidelberg, Bergheimer Str. 54, 69115 Heidelberg, Germany. Email: [email protected]Search for more papers by this authorJohannes Feldhege MSC
Center for Psychotherapy Research, University Hospital Heidelberg, Heidelberg, Germany
Markus Moessner and Johannes Feldhege should be considered joint first author
Search for more papers by this authorMarkus Wolf PhD
Department of Psychology, University of Zurich, Zurich, Switzerland
Search for more papers by this authorStephanie Bauer PhD
Center for Psychotherapy Research, University Hospital Heidelberg, Heidelberg, Germany
Search for more papers by this authorAbstract
Objective
Social media plays an important role in everyday life of young people. Numerous studies claim negative effects of social media and media in general on eating disorder risk factors. Despite the availability of big data, only few studies have exploited the possibilities so far in the field of eating disorders.
Method
Methods for data extraction, computerized content analysis, and network analysis will be introduced. Strategies and methods will be exemplified for an ad-hoc dataset of 4,247 posts and 34,118 comments by 3,029 users of the proed forum on Reddit.
Results
Text analysis with latent Dirichlet allocation identified nine topics related to social support and eating disorder specific content. Social network analysis describes the overall communication patterns, and could identify community structures and most influential users. A linear network autocorrelation model was applied to estimate associations in language among network neighbors. The supplement contains R code for data extraction and analyses.
Discussion
This paper provides an introduction to investigating social media data, and will hopefully stimulate big data social media research in eating disorders. When applied in real-time, the methods presented in this manuscript could contribute to improving the safety of ED-related online communication.
Supporting Information
Additional Supporting Information may be found online in the supporting information tab for this article.
Filename | Description |
---|---|
eat22878-sup-0001-suppinfo01.docx1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Airoldi, E. M., & Bischof, J. M. (2016). Improving and evaluating topic models and other models of text. Journal of the American Statistical Association, 111(516), 1381–1403. https://doi.org/10.1080/01621459.2015.1051182
- Becker, A. E., Fay, K. E., Agnew-Blais, J., Khan, A. N., Striegel-Moore, R. H., & Gilman, S. E. (2011). Social network media exposure and adolescent eating pathology in Fiji. British Journal of Psychiatry, 198(01), 43–50. https://doi.org/10.1192/bjp.bp.110.078675
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022. https://doi.org/10.1162/jmlr.2003.3.4-5.993
- Blondel, V. D., Guillaume, J. -L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
- Borzekowski, D. L., Schenk, S., Wilson, J. L., & Peebles, R. (2010). e-Ana and e-Mia: A content analysis of pro-eating disorder web sites. American Journal of Public Health, 100(8), 1526–1534. https://doi.org/10.2105/ajph.2009.172700
-
Boyd, R. L. (2017). Psychological text analysis in the digital humanities. In S. Hai-Jew, (Ed.), Data analytics in digital humanities. Multimedia systems and applications. Cham, Switzerland: Springer. pp. 161–189. https://doi.org/10.1007/978-3-319-54499-1_7
10.1007/978-3-319-54499-1_7 Google Scholar
- Campaioli, G., Sale, E., Simonelli, A., & Pomini, V. (2017). The dual value of the web: Risks and benefits of the use of the internet in disorders with a self-destructive component in adolescents and young adults. Contemporary Family Therapy, 39(4), 301–313. https://doi.org/10.1007/s10591-017-9443-9
- Carron-Arthur, B., Ali, K., Cunningham, J. A., & Griffiths, K. M. (2015). From help-seekers to influential users: A systematic review of participation styles in online health communities. Journal of Medical Internet Research, 17(12), e271. https://doi.org/10.2196/jmir.4705
- Carron-Arthur, B., Reynolds, J., Bennett, K., Bennett, A., & Griffiths, K. M. (2016). What's all the talk about? Topic modelling in a mental health internet support group. BMC Psychiatry, 16(1), 367. https://doi.org/10.1186/s12888-016-1073-5
- Casilli, A. A., Pailler, F., & Tubaro, P. (2013). Online networks of eating-disorder websites: Why censoring pro-ana might be a bad idea. Perspectives in Public Health, 133(2), 94–95. https://doi.org/10.1177/1757913913475756
- Chancellor, S., Lin, Z., & De Choudhury, M. (2016). “This Post Will Just Get Taken Down”: characterizing removed pro-eating disorder social media content. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp 1157–1162). https://doi.org/10.1145/2858036.2858248
- Chancellor, S., Lin, Z., Goodman, E. L., Zerwas, S., & De Choudhury, M. (2016). Quantifying and predicting mental illness severity in online pro-eating disorder communities. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (pp 1171–1184). https://doi.org/10.1145/2818048.2819973
- Chancellor, S., Pater, J. A., Clear, T., Gilbert, E., & De Choudhury, M. (2016). #thyghgapp: Instagram content moderation and lexical variation in pro-eating disorder communities. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (pp 1201–1213). https://doi.org/10.1145/2818048.2819963
- Chen, E. E., & Wojcik, S. P. (2016). A practical guide to big data research in psychology. Psychological Methods, 21(4), 458–474. https://doi.org/10.1037/met0000111
- Chou, W-y. S., Prestin, A., & Kunath, S. (2014). Obesity in social media: A mixed methods analysis. Translational Behavioral Medicine, 4(3), 314–323. https://doi.org/10.1007/s13142-014-0256-1
- Christakis, N. A., & Fowler, J. H. (2007). The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357(4), 370–379. https://doi.org/10.1056/NEJMsa066082
- Christakis, N. A., & Fowler, J. H. (2013). Social contagion theory: Examining dynamic social networks and human behavior. Statistics in Medicine, 32(4), 556–577. https://doi.org/10.1002/sim.5408
- Chung, C. K., & Pennebaker, J. W. (2008). Revealing dimensions of thinking in open-ended self-descriptions: An automated meaning extraction method for natural language. Journal of Research in Personality, 42(1), 96–132. https://doi.org/10.1016/j.jrp.2007.04.006
- Cohen, R., & Blaszczynski, A. (2015). Comparative effects of Facebook and conventional media on body image dissatisfaction. Journal of Eating Disorders, 3(1), 23. https://doi.org/10.1186/s40337-015-0061-3
- Csipke, E., & Horne, O. (2007). Pro-eating disorder websites: Users' opinions. European Eating Disorders Review, 15(3), 196–206. https://doi.org/10.1002/erv.789
- Custers, K., & Van den Bulck, J. (2009). Viewership of pro-anorexia websites in seventh, ninth and eleventh graders. European Eating Disorders Review, 17(3), 214–219. https://doi.org/10.1002/erv.910
- De Choudhury, M., & Kıcıman, E. (2017). The language of social support in social media and its effect on suicidal ideation risk. Proceedings of the. International Aaai Conference on Weblogs and Social Media. International AAAi Conference on Weblogs and Social Media, 2017, 32–41.
- Eckler, P., Kalyango, Y., & Paasch, E. (2017). Facebook use and negative body image among U.S. college women. Women & Health, 57(2), 249–267. https://doi.org/10.1080/03630242.2016.1159268
- Eikey, E. V., Reddy, M. C., Booth, K. M., Kvasny, L., Blair, J. L., Li, V., & Poole, E. S. (2017). Desire to be underweight: exploratory study on a weight loss app community and user perceptions of the impact on disordered eating behaviors. JMIR Mhealth and Uhealth, 5(10), e150. https://doi.org/10.2196/mhealth.6683
- Eysenbach, G., Powell, J., Englesakis, M., Rizo, C., & Stern, A. (2004). Health related virtual communities and electronic support groups: Systematic review of the effects of online peer to peer interactions. BMJ, 328(7449), 1166. https://doi.org/10.1136/bmj.328.7449.1166
- Feinerer, I., & Hornik, K. (2017). tm: Text Mining Package (Version 0.7-3). Retrieved from https://CRAN.R-project.org/package=tm
- Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. PNAS, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799
- Gkotsis, G., Oellrich, A., Velupillai, S., Liakata, M., Hubbard, T. J. P., Dobson, R. J. B., & Dutta, R. (2017). Characterisation of mental health conditions in social media using informed deep learning. Scientific Reports, 7, 45141. https://doi.org/10.1038/srep45141
- Golder, S. A., & Macy, M. W. (2011). Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051), 1878–1881. https://doi.org/10.1126/science.1202775.
- Gottschalk, L. A., & Bechtel, R. J. (1993). Psychologic and neuropsychiatric assessment survey: Computerized content analysis of natural language or verbal texts. Palo Alto, CA: Mind Garden.
- Haas, S. M., Irr, M. E., Jennings, N. A., & Wagner, L. M. (2011). Communicating thin: A grounded model of online negative enabling support groups in the pro-anorexia movement. New Media & Society, 13(1), 40–57. https://doi.org/10.1177/1461444810363910
- Harper, K., Sperry, S., & Thompson, J. K. (2008). Viewership of pro-eating disorder websites: Association with body image and eating disturbances. International Journal of Eating Disorders, 41(1), 92–95. https://doi.org/10.1002/eat.20408
- Holland, G., & Tiggemann, M. (2016). A systematic review of the impact of the use of social networking sites on body image and disordered eating outcomes. Body Image, 17, 100–110. https://doi.org/10.1016/j.bodyim.2016.02.008
- Ireland, M. E., & Pennebaker, J. W. (2010). Language style matching in writing: Synchrony in essays, correspondence, and poetry. Journal of Personality and Social Psychology, 99(3), 549–571. https://doi.org/10.1037/a0020386.
- Juarascio, A. S., Shoaib, A., & Timko, C. A. (2010). Pro-eating disorder communities on social networking sites: A content analysis. Eating Disorders, 18(5), 393–407. https://doi.org/10.1080/10640266.2010.511918
- Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211–240. https://doi.org/10.1037/0033-295X.104.2.211
- Landers, R. N., Brusso, R. C., Cavanaugh, K. J., & Collmus, A. B. (2016). A primer on theory-driven web scraping: Automatic extraction of big data from the Internet for use in psychological research. Psychological Methods, 21(4), 475–492. https://doi.org/10.1037/met0000081
- Lapinski, M. K. (2006). StarvingforPerfect.com: A theoretically based content analysis of pro-eating disorder web sites. Health Communication, 20(3), 243–253. https://doi.org/10.1207/s15327027hc2003_4
- Martijn, C., Smeets, E., Jansen, A., Hoeymans, N., & Schoemaker, C. (2009). Don't get the message: The effect of a warning text before visiting a proanorexia website. International Journal of Eating Disorders, 42(2), 139–145. https://doi.org/10.1002/eat.20598
- Mingoia, J., Hutchinson, A. D., Wilson, C., & Gleaves, D. H. (2017). The relationship between social networking site use and the internalization of a thin ideal in females: A meta-analytic review. Frontiers in Psychology, 8, 1351. https://doi.org/10.3389/fpsyg.2017.01351
- Moorhead, S. A., Hazlett, D. E., Harrison, L., Carroll, J. K., Irwin, A., & Hoving, C. (2013). A new dimension of health care: Systematic review of the uses, benefits, and limitations of social media for health communication. Journal of Medical Internet Research, 15(4), e85. https://doi.org/10.2196/jmir.1933
- Murray, M., Maras, D., & Goldfield, G. S. (2016). Excessive time on social networking sites and disordered eating behaviors among undergraduate students: Appearance and weight esteem as mediating pathways. Cyberpsychology, Behavior, and Social Networking, 19(12), 709–715. https://doi.org/10.1089/cyber.2016.0384
- Nguyen, T., O'Dea, B., Larsen, M., Phung, D., Venkatesh, S., & Christensen, H. (2017). Using linguistic and topic analysis to classify sub-groups of online depression communities. Multimedia Tools and Applications, 76(8), 10653–10676. https://doi.org/10.1007/s11042-015-3128-x
- Nguyen, T., Phung, D., Dao, B., Venkatesh, S., & Berk, M. (2014). Affective and content analysis of online depression communities. IEEE Transactions on Affective Computing, 5(3), 217–226. https://doi.org/10.1109/TAFFC.2014.2315623
- Norris, M. L., Boydell, K. M., Pinhas, L., & Katzman, D. K. (2006). Ana and the internet: A review of pro-anorexia websites. International Journal of Eating Disorders, 39(6), 443–447. https://doi.org/10.1002/eat.20305
- O'Dea, B., Larsen, M. E., Batterham, P. J., Calear, A. L., & Christensen, H. (2017). A linguistic analysis of suicide-related twitter posts. Crisis, 38(5), 319–329. https://doi.org/10.1027/0227-5910/a000443.
- O'Malley, A. J. (2013). The analysis of social network data: An exciting frontier for statisticians. Statistics in Medicine, 32(4), 539–555. https://doi.org/10.1002/sim.5630
- O'Malley, A. J., & Marsden, P. V. (2008). The analysis of social networks. Health Services and Outcomes Research Methodology, 8(4), 222–269. https://doi.org/10.1007/s10742-008-0041-z
- Pappa, G. L., Cunha, T. O., Bicalho, P. V., Ribeiro, A., Couto Silva, A. P., Meira, W., Jr., & Beleigoli, A. M. R. (2017). Factors associated with weight change in online weight management communities: A case study in the LoseIt Reddit Community. Journal of Medical Internet Research, 19(1), e17. https://doi.org/10.2196/jmir.5816
- Park, A., & Conway, M. (2017). Longitudinal changes in psychological states in online health community members: Understanding the long-term effects of participating in an online depression community. Journal of Medical Internet Research, 19(3), e71. https://doi.org/10.2196/jmir.6826
- Peebles, R., Wilson, J. L., Litt, I. F., Hardy, K. K., Lock, J. D., Mann, J. R., & Borzekowski, D. L. G. (2012). Disordered eating in a digital age: eating behaviors, health, and quality of life in users of websites with pro-eating disorder content. Journal of Medical Internet Research, 14(5), e148. https://doi.org/10.2196/jmir.2023
- Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development and psychometric properties of LIWC2015. Austin, TX: University of Texas at Austin.
-
Qiu, L.,
Chan, S. H. M., &
Chan, D. (2018). Big data in social and psychological science: Theoretical and methodological issues. Journal of Computational Social Science, 1(1), 59–66. https://doi.org/10.1007/s42001-017-0013-6
10.1007/s42001-017-0013-6 Google Scholar
- R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
- Ransom, D. C., La Guardia, J. G., Woody, E. Z., & Boyd, J. L. (2010). Interpersonal interactions on online forums addressing eating concerns. International Journal of Eating Disorders, 43(2), 161–170. https://doi.org/10.1002/eat.20629
-
Roberts, M. E.,
Stewart, B., &
Tingley, D. (2016). Navigating the local modes of big data: The case of topic models. In R. M. Alvarez (Ed.), Computational social science: Discovery and prediction (pp. 51–97). New York: Cambridge University Press.
10.1017/CBO9781316257340.004 Google Scholar
- Roberts, M. E., Stewart, B. M., & Airoldi, E. M. (2016). A model of text for experimentation in the social sciences. Journal of the American Statistical Association, 111(515), 988–1003. https://doi.org/10.1080/01621459.2016.1141684
- Roberts, M. E., Stewart, B. M., & Tingley, D. (2017). stm: R Package for Structural Topic Models. Retrieved from http://www.structuraltopicmodel.com
- Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., … Rand, D. G. (2014). Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4), 1064–1082. https://doi.org/10.1111/ajps.12103
- Rodgers, R. F., Lowy, A. S., Halperin, D. M., & Franko, D. L. (2016). A meta-analysis examining the influence of pro-eating disorder websites on body image and eating pathology. European Eating Disorders Review, 24(1), 3–8. https://doi.org/10.1002/erv.2390
- Rodgers, R. F., Skowron, S., & Chabrol, H. (2012). Disordered eating and group membership among members of a pro-anorexic online community. European Eating Disorders Review, 20(1), 9–12. https://doi.org/10.1002/erv.1096
-
Sadeque, F.,
Pedersen, T.,
Solorio, T.,
Shrestha, P.,
Rey-Villamizar, N., &
Bethard, S. (2016). Why do they leave: Modeling participation in online depression forums. Proceedings of the 4th Workshop on Natural Language Processing and Social Media (pp 14–19).
10.18653/v1/W16-6203 Google Scholar
- Saffran, K., Fitzsimmons-Craft, E. E., Kass, A. E., Wilfley, D. E., Taylor, C. B., & Trockel, M. (2016). Facebook usage among those who have received treatment for an eating disorder in a group setting. International Journal of Eating Disorders, 49(8), 764–777. https://doi.org/10.1002/eat.22567
- Schofield, A., Magnusson, M., & Mimno, D. (2017). Pulling out the stops: Rethinking stopword removal for topic models. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics ( 432–436). https://doi.org/10.18653/v1/E17-2069
- Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., … Ungar, L. H. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS One, 25, 8(9), e73791. https://doi.org/10.1371/journal.pone.0073791.
- Seabrook, E. M., Kern, M. L., & Rickard, N. S. (2016). Social networking sites, depression, and anxiety: A systematic review. JMIR Mental Health, 3(4), e50. https://doi.org/10.2196/mental.5842
- Sidani, J. E., Shensa, A., Hoffman, B., Hanmer, J., & Primack, B. A. (2016). The association between social media use and eating concerns among US young adults. Journal of the Academy of Nutrition and Dietetics, 116(9), 1465–1472. https://doi.org/10.1016/j.jand.2016.03.021
- Sinnenberg, L., Buttenheim, A. M., Padrez, K., Mancheno, C., Ungar, L., & Merchant, R. M. (2017). Twitter as a tool for health research: A systematic review. American Journal of Public Health, 107(1), e1–e8. https://doi.org/10.2105/AJPH.2016.303512
- Sowles, S. J., McLeary, M., Optican, A., Cahn, E., Krauss, M. J., Fitzsimmons-Craft, E. E., … Cavazos-Rehg, P. A. (2018). A content analysis of an online pro-eating disorder community on Reddit. Body Image, 24, 137–144. https://doi.org/10.1016/j.bodyim.2018.01.001
- Steakley-Freeman, D. M., Jarvis-Creasey, Z. L., & Wesselmann, E. D. (2015). What's eating the internet? Content and perceived harm of pro-eating disorder websites. Eating Behaviors, 19, 139–143. https://doi.org/10.1016/j.eatbeh.2015.08.003
- Stone, P. J., Dunphy, D. C., Smith, M. S., & Ogilvie, D. M. (1966). The general inquirer: A computer approach to content analysis. Cambridge, MA: MIT Press.
- Valkenburg, P. M., Koutamanis, M., & Vossen, H. G. M. (2017). The concurrent and longitudinal relationships between adolescents' use of social network sites and their social self-esteem. Computers in Human Behavior, 76, 35–41. https://doi.org/10.1016/j.chb.2017.07.008
- Walker, M., Thornton, L., De Choudhury, M., Teevan, J., Bulik, C. M., Levinson, C. A., & Zerwas, S. (2015). Facebook use and disordered eating in college-aged women. Journal of Adolescent Health, 57(2), 157–163. https://doi.org/10.1016/j.jadohealth.2015.04.026
- Wang, T., Brede, M., Ianni, A., & Mentzakis, E. (2017). Detecting and characterizing eating-disorder communities on social media. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (pp 91–100). https://doi.org/10.1145/3018661.3018706
- Wang, X., Shi, J., Chen, L., & Peng, T. -Q. (2016). An examination of users' influence in online HIV/AIDS communities. Cyberpsychology, Behavior & Social Networking, 19(5), 314–320. https://doi.org/10.1089/cyber.2015.0539
- Wang, Y.-C., Kraut, R. E., & Levine, J. M. (2015). Eliciting and receiving online support: using computer-aided content analysis to examine the dynamics of online social support. Journal of Medical Internet Research, 17(4), e99. https://doi.org/10.2196/jmir.3558
- Wolf, M., Sedway, J., Bulik, C. M., & Kordy, H. (2007). Linguistic analyses of natural written language: Unobtrusive assessment of cognitive style in eating disorders. International Journal of Eating Disorders, 40(8), 711–717. https://doi.org/10.1002/eat.20445
- Wolf, M., Theis, F., & Kordy, H. (2013). Language use in eating disorder blogs: Psychological implications of social online activity. Journal of Language and Social Psychology, 32(2), 212–226. https://doi.org/10.1177/0261927x12474278
- Wongkoblap, A., Vadillo, M. A., & Curcin, V. (2017). Researching mental health disorders in the era of social media: Systematic review. Journal of Medical Internet Research, 19(6), e228. https://doi.org/10.2196/jmir.7215
- Xu, R., & Zhang, Q. (2016). Understanding online health groups for depression: Social network and linguistic perspectives. Journal of Medical Internet Research, 18(3), e63. https://doi.org/10.2196/jmir.5042
- Yom-Tov, E., Brunstein-Klomek, A., Mandel, O., Hadas, A., & Fennig, S. (2018). Inducing behavioral change in seekers of pro-anorexia content using internet advertisements: Randomized controlled trial. JMIR Mental Health, 5(1), e6. https://doi.org/10.2196/mental.8212
- Zhao, K., Wang, X., Cha, S., Cohn, A. M., Papandonatos, G. D., Amato, M. S., … Graham, A. L. (2016). A multirelational social network analysis of an online health community for smoking cessation. Journal of Medical Internet Research, 18(8), e233. https://doi.org/10.2196/jmir.5985