Amplitude modulation and nonlinear dynamics of small amplitude ion-acoustic waves in five component cometary plasmas
Debaditya Kolay
Department of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, Jote, India
Search for more papers by this authorCorresponding Author
Debjit Dutta
Department of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, Jote, India
Correspondence
Debjit Dutta, Department of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, Jote 791113, India.
Email: [email protected]
Search for more papers by this authorBiswajit Sahu
Department of Mathematics, West Bengal State University, Kolkata, India
Search for more papers by this authorDebaditya Kolay
Department of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, Jote, India
Search for more papers by this authorCorresponding Author
Debjit Dutta
Department of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, Jote, India
Correspondence
Debjit Dutta, Department of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, Jote 791113, India.
Email: [email protected]
Search for more papers by this authorBiswajit Sahu
Department of Mathematics, West Bengal State University, Kolkata, India
Search for more papers by this authorAbstract
The formation and propagation dynamics of the finite-amplitude ion-acoustic wave (IAW) structures (e.g., soliton, breather, rogue wave, etc.) is theoretically investigated in a plasma comprising of kappa distributed solar and cometary electrons of different temperatures, a hot drift ion component, and a pair of oppositely charged oxygen ion components. The modified-KdV (mKdV) equation is derived in order to study the propagation dynamics of the ion-acoustic solitary wave (IASW). It is then converted into the nonlinear Schrödinger equation (NLS) through appropriate algebraic manipulation in order to observe the amplitude modulation of the IAWs. Also, the appearance of envelope soliton and the possibility of breather structure formation have been studied from the NLS equation. The dependence of plasma parameters on the formation and propagation of IAW structures has been briefly discussed. The modified-KdV equation is reduced in a dynamical system through the application of coordinate transformation. The existence of finite-amplitude nonlinear and supernonlinear IAWs is demonstrated by phase plane analysis. Due to the fact that the results are primarily associated with cometary plasma, they possibly provide greater insight of the nonlinear characteristics of cometary plasma.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- 1H. Ikezi, R. Taylor, D. Baker, Phys. Rev. Lett. 1970, 25, 11.
- 2R. Z. Sagdeev, M. A. Leontovich, Rev. Plasma Phys. 1966, 4, 23.
- 3R. Malik, H. K. Malik, J. Theor. Appl. Phys. 2013, 7, 65.
10.1186/2251-7235-7-65 Google Scholar
- 4M. Hafez, Astrophys. Space Sci. 2020, 365, 78.
- 5M. Hafez, P. Akter, S. A. A. Karim, et al., Appl. Sci. 2020, 10, 6115.
- 6M. Hafez, S. Singh, R. Sakthivel, S. Ahmed, AIP Adv. 2020, 10, 065234.
- 7V. M. Vasyliunas, J. Geophys. Res. 1968, 73, 7519.
- 8S. K. El-Labany, W. F. El-Taibany, A. Atteya, Phys. Lett. A 2018, 382, 412.
- 9U. K. Samanta, A. Saha, P. Chatterjee, Phys. Plasmas 2013, 20, 022111.
- 10M. M. Selim, A. El-Depsy, E. F. El-Shamy, Astrophys. Space Sci. 2015, 360, 66.
- 11D. T. Patrice, A. Mohamadou, T. C. Kofane, Phys. Plasmas 2017, 24, 123706.
- 12B. Pal, S. Poria, B. Sahu, Phys. Plasmas 2015, 22, 042306.
- 13A. Saha, P. Chatterjee, Astrophys. Space Sci. 2014, 353, 163.
- 14A. Saha, P. Chatterjee, Eur. Phys. J. D 2015, 69, 203.
- 15A. Saha, P. Chatterjee, Braz. J. Phys. 2015, 45, 419.
- 16A. Saha, P. Chatterjee, Eur. Phys. J. Plus 2015, 130, 222.
- 17R. Ali, A. Saha, P. Chatterjee, Phys. Plasmas 2017, 24, 122106.
- 18R. Ali, A. Saha, P. Chatterjee, Indian J. Phys. 2017, 91, 689.
- 19D. Kolay, D. Dutta, Z. Naturforsch. A 2022, 77, 1045.
- 20D. Kolay, D. Dutta, A. Saha, Indian J. Phys. 2023, 97, 4465.
- 21D. Kolay, D. Dutta, A. Saha, Astrophys. Space Sci. 2023, 368, 4.
- 22T. K. Das, A. Saha, N. Pal, P. Chatterjee, Phys. Plasmas 2017, 24, 073707.
- 23T. K. Das, R. Ali, P. Chatterjee, Phys. Plasmas 2017, 24, 103703.
- 24D. Kolay, D. Dutta, B. Sahu, Waves Random Complex Media 2023, 1-23.
10.1080/17455030.2023.2226236 Google Scholar
- 25A. E. Dubinov, D. Y. Kolotkov, Rev. Modern Plasma Phys. 2018, 2, 2.
10.1007/s41614-018-0014-9 Google Scholar
- 26A. Dubinov, D. Kolotkov, M. Sazonkin, Tech. Phys. 2012, 57, 585.
- 27A. Abdikian, J. Tamang, A. Saha, Commun. Theor. Phys. 2020, 72, 075502.
- 28J. Tamang, A. Abdikian, A. Saha, Phys. Scr. 2020, 95, 105604.
- 29A. Saha, P. Chatterjee, S. Banerjee, Eur. Phys. J. Plus 2020, 135, 801.
- 30A. Saha, P. Prasad, S. Banerjee, Astrophys. Space Sci. 2019, 364, 180.
- 31B. Yan, P. Prasad, S. Mukherjee, A. Saha, S. Banerjee, Complexity 2020, 2020, 1.
- 32P. Prasad, A. Gowrisankar, A. Saha, S. Banerjee, Phys. Scr. 2020, 95, 065603.
- 33P. Prasad, S. Sarkar, A. Saha, K. Mondal, Braz. J. Phys. 2019, 49, 698.
- 34A. Abdikian, A. Saha, S. Alimirzaei, J. Taibah Univ. Sci. 2020, 14, 1051.
- 35N. S. Saini, I. Kourakis, Phys. Plasmas 2008, 15, 123701.
- 36S. Sultana, S. Islam, A. A. Mamun, Astrophys. Space Sci. 2014, 351, 581.
- 37I. Kourakis, P. K. Shukla, J. Phys. A: Math. Gen. 2003, 36, 11901.
- 38A. S. Bains, M. Tribeche, T. S. Gill, Phys. Plasmas 2011, 18, 022108.
- 39D. H. Peregrine, J. Aust. Math. Soc. Ser. B Appl. Math. 1983, 25, 16.
- 40B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, Nature Phys. 2010, 6, 790.
- 41K. B. Dysthe, K. Trulsen, Phys. Scr. 1999, T82, 48.
- 42A. Chabchoub, N. P. Hoffmann, N. Akhmediev, Phys. Rev. Lett. 2011, 106, 204502.
- 43H. Bailung, S. K. Sharma, Y. Nakamura, Phys. Rev. Lett. 2011, 107, 255005.
- 44D. Clamond, M. Francius, J. Grue, C. Kharif, Eur. J. Mech. B (Fluids) 2006, 25, 536.
- 45V. V. Voronovich, V. I. Shrira, G. Thomas, J. Fluid Mech. 2008, 604, 263.
- 46H. Madanian, T. E. Cravens, J. Burch, R. Goldstein, M. Rubin, Z. Nemeth, C. Goetz, C. Koenders, K. Altwegg, The Astronomical J. 2017, 153, 30.
- 47V. M. Vasyliunas, J. Geophys. Res. 1968, 73, 2839.
- 48T. W. Broiles, G. Livadiotis, J. L. Burch, K. Chae, G. Clark, T. E. Cravens, R. Davidson, A. Eriksson, R. A. Frahm, S. A. Fuselier, J. Goldstein, R. Goldstein, P. Henri, H. Madanian, K. Mandt, Mokashi, C. Pollock, A. Rahmati, M. Samara, S. J. Schwartz, J. Geophys. Res.: Space Phys 2016, 121, 7407.
- 49H. Balsiger, K. Altwegg, F. Buhler, J. Geiss, A. G. Ghielmetti, et al., Nature 1986, 321, 330.
- 50A. L. Brinca, B. T. Tsurutani, Astron. Astrophys. 1987, 187, 311.
- 51M. Rubin, K. C. Hansen, T. I. Gombosi, M. R. Combi, K. Altwegg, H. Balsiger, Icarus 2009, 199, 505.
- 52K. L. Heritier, K. Altwegg, H. Balsiger, J.-J. Berthelier, A. Beth, A. Bieler, N. Biver, U. Calmonte, M. R. Combi, J. De Keyser, A. I. Eriksson, B. Fiethe, N. Fougere, S. A. Fuselier, M. Galand, S. Gasc, T. I. Gombosi, et al., Mon. Not. R. Astron. Soc. 2017, 469, S427.
- 53A. Beth, K. Altwegg, H. Balsiger, J.-J. Berthelier, M. R. Combi, J. De Keyser, B. Fiethe, S. A. Fuselier, M. Galand, T. I. Gombosi, M. Rubin, T. Se'mon, A and A 2020, 642, A27.
- 54P. Chaizy, P. H. Re'me, J. A. Sauvaud, C. d'Uston, R. P. Lin, D. E. Larson, D. L. Mitchell, K. A. Anderson, C. W. Carlson, A. Korth, D. A. Mendis, Nature 1991, 349, 393.
- 55M. A. Cordiner, S. B. Charnley, Meteorit. Planet. Sci. 2014, 49, 21.
- 56T. E. Cravens, Adv. Space Res. 1987, 7, 147.
- 57M. Galand, K. L. Hertier, E. Odelstad, P. Henri, T. W. Broiles, Mon. Not. R. Astron. Soc. 2016, 462, S331.
- 58K. L. Heritier, M. Galand, P. Henri, F. L. Johansson, A. Beth, A. I. Eriksson, X. Vallie'res, K. Altwegg, J. L. Burch, C. Carr, E. Ducrot, R. Hajra, M. Rubin, A and A 2018, 618, A77.
10.1051/0004-6361/201832881 Google Scholar
- 59C. L. Hyder, J. C. Brandt, R. G. Roosen, Icarus 1974, 23, 601.
- 60A. I. Ershkovich, A. B. Heller, Astrophys. Space, Sci. 1977, 48, 365.
- 61T. Hada, C. F. Kennel, B. Buti, J. Geophys. Res. 1989, 94, 65.
- 62B. T. Tsurutani, E. J. Smith, H. Matsumoto, A. L. Brinca, N. Omidi, Geophys. Res. Lett. 1990, 17, 757.
- 63K. A. Anderson, C. W. Carlson, D. W. Curtis, R. P. Lin, H. Reme, et al., Astron. Astrophys. 1987, 187, 290.
- 64F. M. Neubauer, K. H. Glassmeier, M. Pohl, J. Raeder, M. H. Acuna, L. F. Burlaga, N. F. Ness, G. Musmann, F. Mariani, M. K. Wallis, E. Ungstrup, H. U. Schmidt, Nature 1986, 321, 352.
- 65A. J. Coates, Adv. Space Res. 1995, 15, 403.
- 66N. T. Willington, A. Varghese, A. C. Saritha, N. S. Philip, C. Venugopal, Adv. Space Res. 2021, 68, 4292.
- 67M. Michael1, N. T. Willington, N. Jayakumar, S. Sebastian, G. Sreekala1, C. Venugopal, J. Theor, Appl. Phys. 2016, 10, 289.
- 68N. C. Lee, Phys. Plasmas 2009, 16, 042316.
- 69T. E. Cravens, Proc. Intl. Astron. Union 1991, 116, 1211.
- 70P. Chaizy, H. Re'me, J. A. Sauvaud, C. d'Uston, R. P. Lin, D. E. Larson, D. L. Mitchell, K. A. Anderson, C. W. Carlson, A. Korth, D. A. Mendis, Nature 1991, 349, 393.
- 71K. Altwegg, H. Balsiger, J. Geiss, R. Goldstein, W.-H. Ip, et al., Astron. Astrophys. 1993, 279, 260.
- 72M. A. Cordiner, S. B. Charnley, Planet. Sci. 2014, 49, 21.
- 73V. Krishnan, S. Ramadurai, Bull. Astrom. Soc. India 1988, 16, 10.
- 74N. S. S. Shalini, A. P. Misra, Phys. Plasmas 2015, 74, 092124.
10.1063/1.4931074 Google Scholar
- 75N. A. Chowdhury, A. Mannan, M. R. Hossen, A. A. Mamun, Cont. Plasma Phys. 2018, 58, 870.
- 76S. A. El-Tantawy, A. M. Wazwaz, S. Ali Shan, Phys. Plasmas 2017, 24, 022105.