A self-adaptive method for the GFDF solution of parabolic problems defined over 3D domains of general shape
L. De Biase
Universita' degli Studi di Milano, Dipartimento di Matematica, Via C. Saldini 50, 20133 Milano, Italy
Search for more papers by this authorG. Ratti
Universita' degli Studi di Milano, Dipartimento di Matematica, Via C. Saldini 50, 20133 Milano, Italy
Search for more papers by this authorL. De Biase
Universita' degli Studi di Milano, Dipartimento di Matematica, Via C. Saldini 50, 20133 Milano, Italy
Search for more papers by this authorG. Ratti
Universita' degli Studi di Milano, Dipartimento di Matematica, Via C. Saldini 50, 20133 Milano, Italy
Search for more papers by this authorAbstract
A self-adaptive method for the solution of elliptic and parabolic problems defined over 3D general multiconnected regions by generalized finite-difference formulae, with boundary approximation by means of polyhedra, is proposed. Different approaches to space refinements are studied and implemented. Numerical examples are given.
References
- 1 I. Babuska and W. C. Rheinboldt. ‘A-posteriori error estimates for the finite element method’, Int. j. numer. methods eng., 12, 1597–1615 (1978).
- 2 I. Babuska and W. C. Rheinboldt. ‘Error estimates for adaptive finite element method’, SIAM J. Numer. Anal., 15, (4), (1978).
- 3 I. Babuska, B. A. Szabo and I. N. Kats. ‘The p-version of the finite element method’, SIAM J. Numer. Anal., 18, (3), (1981).
- 4 J. Brackbill and J. Saltzman. ‘Adaptive zoning for singular problems in 2D’, J. Comput. Phys., 46, 342–368 (1982).
- 5 D. W. Kelly, J. P. De, S. R. Gago, O. C. Zienkiewicz and I. Babuska. ‘A-posteriori error analysis and adaptive process in the finite element method’, Int. j. numer. methods eng., 19 (1983).
- 6 B. A. Szabo. ‘Mesh design for the p-version of the finite element method’, Comput. Methods Appl. Mech. Eng., 55, 181–197 (1986).
- 7 I. Babuska and A. Miller. ‘A feedback finite element method with a-posteriori error estimation’, Comp. Methods Appl. Mech. Eng., 61, 1–40 (1987).
- 8 D. W. Kelly, R. J. Mills, J. A. Reizes and A. D. Miller. ‘A-posteriori estimates of the soltion error caused by discretization in the finite element, finite difference and boundary element methods’, Int. j. numer. methods eng., 24, 1921–1939 (1987).
- 9 D. W. Kelly, R. J. Mills, J. A. Reizes and A. D. Miller. ‘A-posteriori error estimates in finite difference techniques’, J. Comput. Phys., 74, 214–232 (1988).
- 10 R. E. Ewing. ‘A-posteriori error estimation’, Comput. Methods Appl. Mech. Eng., 82, 59–72 (1990).
- 11 B. A. Szabo. ‘The use of a priori estimates in engineering computations’, Comput. Methods Appl. Mech. Eng., 82, 139–154 (1990).
- 12 J. F. Thompson, Z. U. A. Warsi and C. W. Mastin, Numerical Grid Generation: Foundations and Applications, North Holland, 1985.
- 13 B. K. Soni, User's Guide for Internal Flow Grid Generation Applications, Sverdrup Technology, 1984.
- 14 P. R. Eiseman. ‘Adaptive grid generation’, Comput. Methods Appl. Mech. Eng., 64, 321–376 (1987).
- 15 I. Altas and J. W. Stephenson. ‘A two dimensional adaptive mesh generation method’, J. Comput. Phys., 94, 201–224 (1991).
- 16 L. De Biase, A. Galli and V. Pennati. ‘ Automatic generation of orthogonal Cartesian networks for the direct solution of differential problems on three-dimensional domains by means of generalized finite differences’, in Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press, 1988, pp. 269–276.
- 17 L. De Biase, F. Feraudi and V. Pennati. ‘ A generalized finite difference solution of the heat conduction equation for arbitrarily shaped 3-D domains’, In Advanced Computational Methods in Heat Transfer, Computat. Mechanics Publications, Springer Verlag, 1990, pp. 83–93.
- 18 S. Corti, L. De Biase and V. Pennati. ‘ A multistep three dimensional generalized difference technique’, In Numerical Methods in Thermal Problems, Pineridge Press, 1989, pp. 1153–1162.
- 19 V. Pennati, L. De Biase and F. Feraudi. ‘A generalized finite difference solution of parabolic 3-D problems on multi-connected regions’, Commun. appl. numer. methods, 8, 361–371 (1992).
- 20 V. Pennati, L. De Biase and S. Failla. ‘ Solution of parabolic problems on 3D domains with boundary conditions involving the normal derivative’, In Recent Advances in Heat Transfer, Elsevier, Amsterdam, 1992.
- 21 E. L. Wilson. ‘The static condensation algorithm’, Int. j. numer. methods eng., 5, 198–203 (1973).
- 22 G. Ratti, ‘ Un metodo adattivo per la soluzione di problemi ellittici e parabolici definiti su domini tridimensionali multiconnessi approssimati automaticamente mediante poliedri’, Masters thesis, 1991; also ENEL CRIS internal report N. 4162 VP, March 1991.
- 23 L. De Biase and F. Frontini. ‘ A stochastic method for global optimization: its structure and numerical performance’, In Towards Global Optimization 2, Dixon & Szego (Eds), North Holland, 1978, pp. 85–101.